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Summary

The score-driven model belongs to a wider class of observation-driven time series models
which are used intensively in empirical studies in economics and finance. A defining feature of
the model is its mechanism of updating time-varying parameters by means of the score function
of the predictive likelihood function. The class of score-driven models contains many other well
known observation-driven models as a special case, but also many new models have been
developed based on the score-driven principle. It provides a general way of parameter updating,
or filtering, in which all relevant features of the observation density function are considered. In
case of models with fat-tailed observation densities, the score-driven updates become robust to
large observations in time series. This kind of robustness is a convenient feature of score-driven
models and makes them suitable for applications in finance and economics where noisy data sets
are regularly encountered. Parameter estimation for score-driven models is straightforward when
using the method of maximum likelihood. In many cases theoretical results are available under
rather general conditions.
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Background and Motivation of Score-Driven Models

In empirical research in economics and finance, it is widely acknowledged that parameters in

reduced-form representations of structural models are subject to various instabilities due to model

misspecifications and approximations. These instabilities are partly caused by the limitations of

linear model specifications which are typically used in applied econometrics. Furthermore, empirical

data sets of interest in economics and finance are typically subject to changing behaviors of

economic agents (possibly aimed at returning to some level of equilibrium), endogenous and

exogenous shocks, systemic innovations, fiscal policy changes, and more. To account for such

instabilities and distortions, linear model specifications are often extended by replacing fixed

parameters with time-varying parameters. These generalizations can apply to parameters related to

both the mean or location (constant and regression coefficients) and the variance or scale (error

variance) equations of the model.

In the context of the standard linear regression model, time-varying parameters can be empirically

detected by means of the recursive least squares method. Although the method was already developed

in the original work of Gauss, it is oftentimes credited to Plackett (1950) who has provided an elegant

derivation based on matrix algebra. The recursive least squares method is a set of equations that

provides the least squares estimates based on a set of observations that is growing with individual

observations, sequentially over time. The standard errors of the recursive estimates tend to become

smaller after each update because the sample size increases. The usual assumptions of the regression

model are also applicable in the context of recursive estimation, including the assumption that the

regression coefficients are constant over time. The relaxation of this assumption has been considered

in the work of Rudolf E. Kalman where in effect each regression parameter can potentially follow

a linear dynamic process; see Kalman (1960). The celebrated Kalman filter can be regarded as the

corresponding recursive least squares method that allows for time-varying regression parameters. It

should be emphasized that Kalman’s work was developed in the context of control and system theory,

relevant in engineering and mathematics. Due to the work of Andrew C. Harvey in the 1970s, the

statistical impact of Kalman’s work for linear regression, autoregressive moving average (ARMA)

and other linear dynamic models has been revealed and acknowledged; see Harvey (1981, Chapter

4) for a textbook treatment. His work has been instrumental in the recognition of the Kalman filter

and its relevance in econometrics. In particular, a strong case is provided by the notion that almost
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all linear dynamic models can be represented as a state space model which consists of an observation

equation and an updating equation for the state vector with the time-varying parameters. Once the

model of interest is represented in state space form, the Kalman filter can be applied straightforwardly.

The output of the Kalman filter enables the estimation of the time-varying parameters but also the

evaluation of the likelihood function using the prediction error decomposition.

In the same period, Sir David Cox recognized two different classes of statistical time series

models with time-varying parameters in his seminal article Cox (1981): observation-driven models

and parameter-driven models. In the latter class of models, the parameters are treated as dynamic

processes with their own source of errors. Due to this additional source of errors, the time-varying

parameters are not perfectly predictable, even if the time-varying parameters are analyzed

conditional on past and concurrent observations. The state space model as discussed above belongs

clearly to the class of parameter-driven models. For the class of observation-driven models,

time-varying parameters are treated as functions of lagged dependent variables as well as exogenous

variables. In such model specifications, when conditioning on past and concurrent observations, the

time-varying parameters are perfectly predictable. It also implies that likelihood evaluation is

relatively straightforward. Given these features and characteristics, observation-driven models have

become popular in econometrics. Typical examples of observation-driven models are the generalized

autoregressive conditional heteroskedasticity (GARCH) models of Engle (1982) and Bollerslev

(1986)), the exponential GARCH (EGARCH) model of Nelson (1991), and the autoregressive

conditional duration (ACD) and intensity (ACI) models of Engle and Russell (1998).

A sub-class of observation-driven models is the class of score-driven models which are proposed

and developed by Creal et al. (2011, 2013) and Harvey (2013). For this class of models, the score of

the conditional observational density is used to update the time-varying parameters in the model.

Here, the score refers to the first derivate of the log likelihood function with respect to the parameter.

A more precise definition of the derivative in the context of score-driven models is provided in the

section ‘Model specification’. The score-driven models are also known as generalized autoregressive

score (GAS) models and as dynamic conditional score (DCS) models. Various factors have given

rise to the use of score-driven models in empirical studies in economics and finance. For example,

the score function provides in many cases an intuitive driving mechanism for the time-varying

parameter. Generally, the score indicates in which ‘direction’ the time-varying parameter must

‘move’ in order to improve the fit in terms of a local (predictive) density. It can therefore be used
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‘naturally’ for designing new updating equations for time-varying parameters; especially in settings

where it is not immediately obvious what is a good choice for a parameter driving mechanism. The

score-driving mechanism is of a particular convenience because it has the important advantage that

the entire predictive density structure is exploited. In other words, all features of the available

information are used in the updating of the time-varying parameter and the information is not limited

to means and/or higher order moments of the predictive density. A more formal motivation to use the

score as parameter driving mechanism is provided by Blasques et al. (2015) where it is argued that

score-driven models are optimal in approximating the conditional observation density, even when the

model is not correctly specified.

In the initial work of both Creal et al. (2013) and Harvey (2013), it has been argued that score-

driven models also lead naturally to robust updating equations for parameters in models where fat-

tailed and asymmetric densities are present. This feature of score-driven models make them quite

appealing for modeling noisy economic and financial data. In particular, high-frequency data such as

weekly, daily or intra-daily time series are often contaminated with much noise and outliers. Another

key feature of score-driven models is that they are easy to implement and fast in computations. Score-

driven models do not rely on complex algorithms or simulation-based methods for the estimation of

fixed parameters and the filtering of time-varying parameters.

More specifically, a convenient feature of observation-driven models is that the likelihood has a

closed-form expression that can be constructed from the prediction error decomposition. Hence, this

class of models offers a convenient framework for its use in empirical work. This is in contrast to

parameter-driven models where the unobserved time-varying parameter process has its own source of

errors which need to be integrated out from the joint density function to obtain the likelihood. In many

cases of empirical interest, integration cannot rely on closed-form expressions and the solution is

typically found in numerical simulation-based methods which are computationally intensive. Still, it

was shown by Koopman et al. (2016) that a score-driven model has a similar forecasting performance

as the corresponding parameter-driven model, even when the latter is the true data generation process.

Furthermore, it is relatively straightforward to extend observation-driven models to settings where,

for example, nonlinear equations, asymmetric densities, and long memory dynamic processes are

present. It may be concluded that score-driven models can be applied straightforwardly to a wide

range of different and elaborate models.

The score-driven class of models encompasses many of the well known observation-driven
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models such as GARCH, ACD and ACI models. It has also given rise to a wide range of newly

developed models which have proven to be useful for economic and financial applications. An

overview of the literature on these more advanced score-driven models is provided in Artemova et al.

(2022). Here, a thorough but still practical introduction of the methodology for score-driven models

is presented. The remainder of the chapter consists of three parts. First, the general model

specification and corresponding methodology are introduced. Second, the various aspects of

score-driven models are examined for a basic location model. Third, a thorough discussion is

presented for score-driven scale models with an emphasis on the Student’s t conditional volatility

model.

Score-Driven Model Specification

This section provides the statistical specification of the score-driven model and discusses its most

important features for a univariate time series of T observations which is denoted by y1, y2, y3, . . . , yT .

Furthermore, it discusses the estimation of the fixed parameters in the model, the filtering of the time-

varying parameters and the predictions and forecasting of the observations, in-sample and out-of-

sample.

Model Specification

The score-driven model is specified as in Creal et al. (2013) and is given by

yt ∼ py(yt|ft,Ft−1; θ) , ft+1 = ω + αst + βft,

st = St · ∇t , ∇t =
∂ log py(yt|ft,Ft−1; θ)

∂ft
,

(1)

where yt is the time series observation at time t, for t = 1, . . . , T , py(yt|ft,Ft−1; θ) denotes the

predictive conditional density for observation yt, ft is the time-varying parameter for the conditional

density, with Ft−1 denoting the information set based on the observations y1, . . . , yt−1, and θ is the

parameter vector that contains fixed and unknown coefficients, including ω , α, and β, but also

parameters that index the predictive density py. It is assumed that the observations become available

sequentially over time. When the observation yt arrives, the time-varying parameter ft is updated

using the updating equation ft+1 = ω + αst + βft. The innovation term for the updating equation is

the scaled score st = St · ∇t where ∇t denotes the score of the predictive conditional density
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py(yt|ft,Ft−1; θ) with respect to ft and St ≡ S(ft,Ft−1; θ) is a scaling function that is discussed in

the section ‘Possible Scaling Measures for the Score’. A similar formulation of the score-driven

model is given by Harvey (2013).

The updating of ft using the score of the conditional predictive density is intuitive. Namely, if a

local ascent algorithm was used to find the local maximum of the predictive density at time t over ft

for a given parameter vector θ , then the score ∇t indicates the direction in which the time-varying

parameter must move, given the current position of ft, according to the algorithm. For this reason, it

is natural to use the score to determine the optimal updating step of ft. This is underlined by Blasques

et al. (2015), who prove the information-theoretic optimality of a simple class of score-driven models

under certain regularity conditions. In particular, they show that time-varying parameter updates

based on the score always reduce the local Kullback-Leibler divergence in expectation and in every

step. These results hold for misspecified models as well. Also, they argue that any parameter update

that is not based on the score does not have this property. These are all limit results. However,

Blasques et al. (2020) show in a Monte Carlo study that the optimality also holds in finite samples for

score-driven conditional volatility models.

Creal et al. (2008, 2013) discuss more options for generalizing the specification in (1). For

example, the model can be specified with a more extensive lag structure and with exogenous

covariates xt in the updating equation for ft. Also, the model can include other forms of nonlinearity

in the updating equation, such as a regime-switching process and a long-memory process.

Furthermore, a setting where the predictive density depends on past values of yt and on some

exogenous covariates xt can be considered. Finally, yt and ft can be vectors, or even matrices, rather

than scalars. In case ft is a time-varying parameter vector, the score st is a vector and the scaling

factor St is a matrix. Having an observation vector yt results in having a multivariate score-driven

model. A range of extensions including multivariate score-driven models is discussed in Artemova

et al. (2022).

Possible Scaling Measures for the Score

The scaling function St allows us to determine how the score ∇t impacts the updating at time t, to

obtain the next ft+1. It must be emphasized that a different choice for St results in an inherently

different model, with a different set of statistical properties. Hence, the most suitable scaling function

for a specific setting must be determined with some care.
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Typically, a natural choice for the scaling factor is a function of the variance of the score ∇t.

Then the scaling is based on the curvature of the conditional log density of the t-th observation.

More specifically, it is common to use the inverse asymptotic variance of the score, which is equal

to the conditional information matrix under standard regularity conditions; so St = I−1t|t−1 where

It|t−1 = Et−1[∇t∇′t]. This leads to the scaled score st having a variance of I−1t|t−1. It is also an

intuitive scaling choice, because in this case the updating equation of ft in (1) can be interpreted as

a Gauss-Newton algorithm for estimating ft over time, as is pointed out by Creal et al. (2011). For

this choice of St, well known models become special cases of the score-driven model. For example, a

score-driven volatility model yt = ftεt, with error εt being standard normally distributed, reduces to

the GARCH model of Bollerslev (1986) for this choice of scaling. Another example of a model that

is encompassed by score-driven models for this choice of scaling is the multiplicative error (MEM)

model of Engle and Gallo (2006), which in turn encompasses the autoregressive conditional duration

and intensity (ACD and ACI) models of Engle and Russell (1998) and Russell (2001), respectively;

see Creal et al. (2013) for a more extensive discussion.

Another possible scaling matrix is St = Jt|t−1 where Jt|t−1 is the square root of the

(pseudo-)inverse information matrix such that J ′t|t−1 · Jt|t−1 = I−1t|t−1. This choice of St is

particularly convenient, because it standardizes the score ∇t such that st itself has a unit variance,

which improves the tractability of the statistical properties of the model.

Finally, a typical last-resort option is to set St = I . For this choice of scaling, or essentially the

lack of scaling, the statistical properties of the model will typically become more complicated. This

is a clear disadvantage. However, when the information matrix It|t−1 is a constant (scalar), or it does

not depend on the time-varying parameter, the scaling is less relevant as the scaled score is scaled

again through its multiplication by α in the updating equation. Such cases include log-scale models

of the form yt = exp(0.5ft)εt and location models of the form yt = ft + εt where St = I−1t|t−1 is

proportional to St = 1.

Estimation, Filter Invertibility and Asymptotic Properties

As highlighted before, a convenient property of observation-driven models, and hence of score-driven

models, is that an explicit expression of the log likelihood is available. Hence the estimation of the

static parameter vector θ via the method of maximum likelihood (ML) is straightforward. Consider

a sample of T observations {yt}Tt=1 generated as described in (1) under some true parameter θ0. The
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true values of {ft}Tt=1 that are used to generate the observations are not observed. Therefore, a filtered

sequence {f̂t(θ)}Tt=1 is constructed recursively using the updating equation of ft for some value of θ

and some starting value f̂1. The application of the prediction error decomposition and the use of the

filtered sequence {f̂t(θ)}Tt=1 provide the following maximization problem

θ̂T = arg max
θ
LT (θ) , where LT (θ) =

T∑
t=1

log py(yt|f̂t(θ); θ) .

It is straightforward to evaluate the value of the log likelihood for some θ because it only requires

two steps: (i) calculating the filtered time-varying parameter {f̂t(θ)}Tt=1 via the score-driven updating

equation in (1), and (ii) calculating the log likelihood contribution of every yt given f̂t(θ) , for t =

1, . . . , T .

Before turning to the asymptotic properties of this ML estimator, an important property that must

be examined when using observation-driven filters is filter invertibility. Invertibility essentially means

that the filtered sequence {f̂t(θ)}Tt=1 will ‘forget’ its starting value in the limit. The starting value of

the time-varying parameter ft is unobserved. Hence, the true starting point f1 is unknown and is not

available for initializing the sequence {f̂t(θ)}Tt=1. It needs to be replaced by some arbitrary value f̂1.

Sometimes it is possible to estimate the starting value alongside the other parameters, but typically

this is not preferred, especially when ft represents a high-dimensional vector. It is important to notice

that when filter invertibility fails, the true path ft(θ0) will not be retrieved in the limit, even if the true

static parameter θ0 is known. Clearly, this will be problematic if the filtered values f̂t(θ) are used to

construct the log likelihood that is used for ML. This crucial point is sometimes overlooked by those

who base their theoretical results on the implicit assumption that the value of f1 is known exactly.

Also, this assumption does not appear to be a realistic because the rest of the sequence f2, f3, . . . is

assumed to be unobserved.

The concept of filter invertibility is discussed in Straumann and Mikosch (2006) who stress that

it is a condition needed for applicability of the quasi ML estimation of a general class of GARCH

models. The importance of filter invertibility for the EGARCH model is highlighted by Wintenberger

(2013). Blasques et al. (2018) provide a way to determine invertibility regions when no feasible

analytical invertibility conditions on the parameters are available. Blasques et al. (2022) give sufficient

conditions for filter invertibility for score-driven models. As is usual in the stationary observation-

driven literature, invertibility is established by showing that the filtered process converges almost
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surely to some unique stationary and ergodic limit process. They follow the approach of Straumann

and Mikosch (2006), which adapts Bougerol (1993, Theorem 3.1) to obtain low-level conditions for

filter invertibility for score filters and their first and second derivative processes. The latter results are

useful for establishing asymptotic normality of the ML estimator.

After establishing the invertibility results for the score-driven model, Blasques et al. (2022)

further provide sufficient conditions for consistency and asymptotic normality of the ML estimator

θ̂T . Two conditions are crucial in this development. First, the updating equation of the ‘true’ ft must

be contracting on average to ensure that the true time-varying parameter is stationary and ergodic.

Second, the filtering equation of f̂t must be uniformly contracting to ensure filter invertibility. The

asymptotic properties derived by Blasques et al. (2022) are global and they rely on low-level

conditions in terms of ‘building blocks’ of score-driven models which are represented by the

equations provided in (1). For example, the derivatives of the score with respect to the parameters

must have bounded moments up to some specific order. These results are particularly helpful for

researchers who want to establish theoretical properties of the ML estimator for a specific

score-driven model. Given certain conditions for the observations, the asymptotic properties remain

to be applicable under potential model misspecification. These theoretical results do not trivially

generalise to settings where the observations yt and/or the time-varying parameter ft are no longer

univariate. However, specific asymptotic results can be established for particular multivariate

score-driven models; see the discussions in Blasques et al. (2016) and Bazzi et al. (2017).

Score-Driven Location Models

This section illustrates the workings of score-driven models in a basic setting. The model for location

is a natural starting point to obtain further insight into score-driven models. These models focus on

the mean equation and are typically used for analysing macroeconomic time series.

Location Model Specification

When the aim is to filter the conditional mean ft = E(yt|Ft−1) of a (univariate) sample of observed

data {yt}Tt=1, consider the score-driven filtering model as given by

yt = ft + εt , (2)
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where {εt}t∈Z is assumed to be an independent and identically distributed (i.i.d.) random sequence

with mean zero and probability density function pε, and where ft is updated according to (1). Assume

that εt is Gaussian with variance σ2. Then St = I−1t|t−1 = σ2, leads to a scaled score st = yt − ft

which yields the linear updating equation for ft as given by

ft+1 = ω + αst + βft = ω + α(yt − ft) + βft . (3)

The updating for ft reduces to an exponentially weighted moving average (EWMA) recursion when

coefficients have values ω = 0, β = 1 and 0 < α < 1. When α > 0, the updating of the conditional

expectation ft is intuitive since ft is effectively the one-step ahead forecast of yt and yt − ft is the

corresponding forecast error. Hence, the updating equation (3) takes into account the forecast error

to construct ft+1, which is defined as the one-step ahead forecast of the next observation yt+1.

Specifically, for α > 0, if ft has a lower (higher) value than yt, then the scaled error α(yt − ft) will

ensure that ft+1 increases (decreases) compared to ft.

Substituting (2) into this equation shows that {ft}t∈Z follows an autoregressive process of order 1,

an AR(1) process, with autoregressive coefficient β. Hence, a necessary and sufficient condition for

stationarity of this sequence is that |β| < 1. The updating equation (3) implies that ft is a weighted

average of all past observations, where observation yt−j has weight α(β−α)j−1, for j = 1, . . . , t−1.

It follows immediately that the filtered sequence f̂t is stationary in the limit, if and only if |β−α| < 1.

This is also the condition for filter invertibility.

Finally, by substituting (3) into (2), it follows that yt is implicitly generated by an ARMA(1,1)

process as given by

yt = ω + βyt−1 + εt + (α− β)εt−1 ,

with autoregressive coefficient β and moving average coefficient α − β. This is an interesting result

and it applies to any distribution for εt. Notice that the process reduces to an AR(1) process when

α = β, and to an MA(1) process when β = 0. Higher order ARMA processes are obtained when

higher order lags for ft and st = yt − ft are considered for the updating equation ft+1 in (1) or, more

specifically, in (3).
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Robust Filtering

The properties of the score-driven location model are almost identical to those of a parameter-driven

Gaussian (stationary) signal plus noise model, which is obtained by replacing st with a Gaussian

random error sequence in the updating equation (3). As shown by Harvey and Luati (2014), this

parallel vanishes when considering a non-Gaussian predictive conditional density py(yt|ft,Ft−1; θ)
in (1). For instance, consider a fat-tailed conditional density such as the Student’s t. The data

generation process for this model will lead to many observations that would be referred to as

“outliers” in a Gaussian context. The updating of ft+1 = ω + α(yt − ft) + βft will not work well as

large observations from previous times will be incorporated in the filtered level ft: it will take time

for the outlying observations to “work through the system”. Hence, this dynamic model is not robust

to large observations which are induced by a heavy-tailed conditional distribution. Therefore, it is

preferred to adopt a model that accounts for these fat-tails. Score-driven models are designed to do

this by considering fat-tailed densities for py(yt|ft,Ft−1; θ) in (1). A more elaborate discussion is

provided by Caivano et al. (2016, Section 2.3 and 2.4) where it is demonstrated that the conditional

score reflects the tail shape of distributions and how this connects to robustness.

For instance, let εt in (2) be Student’s t distributed with ν > 0 degrees of freedom and scale

parameter σ > 0. Then the conditional observation distribution becomes

f(yt|ft,Ft−1; θ) =
Γ(ν+1

2
)√

πνΓ(ν
2
)σ

(
1 +

(yt − ft)2
νσ2

)− ν+1
2

,

implying that the score-driven updating equation will become

ft+1 = ω + αst + βft , st =
yt − ft

1 + ν−1σ−2(yt − ft)2
, (4)

according to (1), using St = (1 + ν−1)−1σ2 which is proportional to the inverse of the conditional

information matrix It|t−1 = (ν+1)σ−2/(ν+3). Equations (2) and (4) together form the score-driven

Student’s t model proposed by Harvey (2013, Section 3.1) and Harvey and Luati (2014). Notice that

the degrees of freedom parameter ν is only required to be positive, which is why the model is referred

to as a location model and not as a mean model. If the degrees of freedom ν →∞, the update becomes

identical to the Gaussian update of (3), which is not surprising because in that case the Student’s t

distribution approaches a normal distribution. The score is plotted for various different choices of ν

11



−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

yt − ft

st

ν = 1
ν = 3
ν = 8
ν →∞

Figure 1: Student’s t score plots for the location model. The score st of the Student’s t location model in (4)
for scale σ = 1 and different degrees of freedom ν.

in Figure 1. For finite values of ν, it is clear that the update in (4) downweights large values of yt− ft
and this downweighting is more severe for smaller values of ν. In that way the updating takes into

account the heavy tails of the disturbances εt, because it implies that large prediction errors might be

due to the nature of the innovations. As |yt − ft| goes to infinity, the score st goes to zero. Because

of the redescending nature of the score, Caivano and Harvey (2014) refer to the weighting induced by

this score-driven filter as a parametric form of trimming. In the robustness literature, trimming is a

common technique in which observations above some threshold receive a weight of zero. Hence, the

Student’s t location filter essentially induces a soft form of trimming.

Harvey and Luati (2014) provide asymptotic results for the ML estimator of this model including

an explicit asymptotic variance matrix in terms of the model’s parameters, but invertibility of the

filter is not explicitly discussed. Blasques et al. (2022) have formulated conditions for consistency

and asymptotic normality of the ML estimator of this model while taking account of the invertibility

conditions. Blasques et al. (2018) have developed a weaker version of the invertibility condition for

this model. It is also possible to adopt a non-stationary version of the score-driven local level model

as given by

yt = ft + εt , ft+1 = ft + αst ,

where st is defined as in (4); this model is suggested by Harvey and Luati (2014). It is a special case of

the model in (2) and (4) with ω = 0 and β = 1. This updating equation for ft also implies an EWMA

scheme but now with time-varying weights that account for the shape of the distribution; see Caivano

et al. (2016). Furthermore, this model can be extended to a more general unobserved components
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Figure 2: Plots of the score ∇t corresponding to the location model for different distributions. The
unscaled score ∇t corresponding to the location model (2) for the Gaussian distribution (with σ2 = 1), the Student’s t
distribution (with σ2 = 6/8 and ν = 8) and the symmetric EGB2 distribution (with σ2 = 1 and ξ = ς ≈ 0.7689) which
all have variance 1 and excess kurtosis 1.5 (except for the Gaussian distribution).

model with score-driven time-varying trend and seasonal components. Such specifications can also

be extended with explanatory variables and fixed effects; see Harvey and Luati (2014).

Leptokurtosis and Asymmetry

Whereas the score-driven location filter based on Student’s t innovations induces a form of trimming,

the filter of a score-driven location model based on the exponential generalized beta distribution of

the second kind (EGB2), as proposed by Caivano and Harvey (2014) and Caivano et al. (2016), has a

Winsorizing property. Winsorizing is a well known approach for the treatment of large observations

in the robustness literature. It entails an updating equation for ft+1 where st is set to a constant value

when the observation passes some given threshold, see Maronna et al. (2006, Chapter 2).

The EGB2 distribution allows for asymmetry and leptokurtosis, but unlike the Student’s t

distribution, it has exponential tails instead of heavy tails. If εt in (2) is EGB2 distributed with mean

0 , variance σ2 > 0 and non-negative shape parameters ξ and ς , then

py(yt|ft,Ft−1; θ) =
h exp (ξ (h(yt − ft)/σ + ∆))

σB(ξ, ς) (1 + exp (h(yt − ft)/σ + ∆))ξ+ς
, (5)

where ∆ = ψ(ξ) − ψ(ς), h =
√
ψ′(ξ) + ψ′(ς), ψ(·) is the digamma function, ψ′(·) is the trigamma

function, and B(·, ·) is the beta function; see for instance Wang et al. (2001) for further details. The

distribution is symmetric if ξ = ς , positively skewed if ξ > ς and negatively skewed if ξ < ς . The

kurtosis decreases as ξ and ς increase and the distribution encompasses the normal distribution (if
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ξ = ς →∞) and the Laplace distribution (if ξ = ς = 0). The scaled score st in (1), corresponding to

the predictive density in (5), is given by

st = hσ

[
(ξ + ς)

exp (h(yt − ft)/σ + ∆)

1 + exp (h(yt − ft)/σ + ∆)
− ξ
]
, (6)

where the scale is set to St = σ2 which is proportional to the inverse of the conditional information

matrix. It is clear that the fraction in the scaled score st is uniformly bounded between −hσξ and

hσς , and st converges to these values as yt − ft → −∞ and yt − ft →∞, respectively. Hence, this

updating mechanism is effectively subject to a gentle or soft form of Winsorizing. The contribution

of large observations is bounded, but it is not redescending like for Student’s t distributed errors; see

Figure 2 for a visual representation of this.

When ξ 6= ς , the distribution is skewed and the score update becomes asymmetric. For example,

if the distribution is negatively skewed, so if ξ < ς , then large positive values get a larger weight than

large negative values of the same magnitude. This is intuitive because negative skewness implies that

negative spikes are more likely to occur than positive spikes and therefore the robust filter should be

less sensitive to negative spikes.

Naturally, score-driven location models based on many other distributions can also be considered.

This will lead to location models with different properties, because the score will take into account

the shape of the distribution. Take for example a general error distribution (GED) also known as

the exponential power distribution, with parameter ν, see (Harvey, 2013, Section 3.10). The GED

encompasses the normal distribution (for ν = 2) and the Laplace distribution (for ν = 1). This GED

is more peaked in comparison to the EGB2 distribution and has super-exponential tails for ν > 1. This

leads to the score being unbounded, unlike the score of the EGB2 distribution, but it will diverge at a

lower rate than the score of the normal distribution if ν < 2. Other distributions to consider for robust

filtering are, for example, the Generalized t distribution of McDonald and Newey (1988) and skewed

versions of all aforementioned symmetric distributions which can for instance be obtained by using

the approach of Fernández and Steel (1998). The section ‘Score-Driven Scale Models’ considers

these distributions in the context of score-driven scale models.
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Illustration: Treasury Bill Rate Spreads

An empirical illustration is presented to show how the score-driven location models can perform

in practice1.. The data set under consideration consists of quarterly observations of the difference

between the 3-month and the 6-month treasury bill (T-bill) rates2.. The sample ranges from 1959:Q3

until 2021:Q1. The T-bill rate for a certain maturity is the yield received by investors for T-bills of

that particular maturity in the secondary market. The difference between rates of different maturities

is referred to as the spread. The left panel of Figure 3 shows a plot of the resulting T-bill rate spreads.

This time series is rather noisy, as it has some sudden, and temporary spikes and drops, especially

in the early 1980s. This seems to indicate the need for a robust filter if the goal is to filter some

underlying location parameter.

To accommodate these concerns, score-driven models with Student’s t and EGB2 innovations are

considered, together with a score-driven model with Gaussian innovations for comparison. The

corresponding updating functions are provided in equations (4), (6) and (3), respectively. The static

parameters are estimated by the method of maximum likelihood. It is anticipated that the robust

Student’s t and EGB2 models will be the most suitable here, because of the occasional erratic

behaviour of the data. The importance of robustness is confirmed by the estimation results reported

in Table 1. Both the Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion

(BIC) are the lowest for the model with Student’s t innovations and highest for the model with the

Gaussian innovations. The EGB2 model has a worse AIC and BIC value than the Student’s t model,

but they are both better than those of the Gaussian model. These results appear to suggest that the

Student’s t distribution, which has fat-tails, fits the data better than the EGB2 distribution, which has

exponential tails.

Flexible distributions like the EGB2 distribution can lead to optimization problems during

parameter estimation, especially for this illustration where the sample size is small. For this

illustration, it appears that likelihood optimization for the EGB2 model enters into a saddlepoint,

even when the process is restarted with new starting values. Hence, no standard errors are reported in

this case. It appears that this numerical issue is caused by the joint estimation of ξ and ς . Therefore,

Table 1 also reports the estimation results for the symmetric EGB2 model, which is obtained through

the restriction ξ = ς . For this model we do not encounter these numerical issues during the

estimation process. This fitted model has a slightly worse AIC, but a slightly better BIC than its
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unrestricted version.

The estimated degrees of freedom parameter of the Student’s t distribution is somewhat small.

This estimation result implies that the error distribution is heavy-tailed which in turn causes the score

st to become more robust against outliers. This is clearly visible in the plotted response curve of the

models presented in the right panel of Figure 3. For small to moderate values, the Student’s t filter

reacts stronger than the Gaussian filter, but for larger values this is no longer the case. Indeed, the

response of the former filter redescends back to zero in the limit, whereas that of the latter diverges

to infinity. For the EGB2 models, the score follows a similar path as the one of the Student’s t,

but it is monotonically increasing instead of redescending. The unrestricted EGB2 model has a score

function that is asymmetric, since ξ > ς implies a mildly positively skewed distribution (the skewness

is 0.33). The left panel of Figure 3 presents the filtered location corresponding to the fitted models,

where the filtered path of the symmetric EGB2 model is omitted because of its similarity to that of the

asymmetric EGB2 model. It is clearly visible that the Gaussian filter reacts more to large observations

than the Student’s t and the EGB2 filters. The filtered paths of the Student’s t and EGB2 model are

very similar, but the latter tends to have a slightly stronger reaction to large shocks than the former.

Table 1: Maximum likelihood estimation results
The maximum likelihood estimates for the score-driven normal, Student’s t and EGB2 location models, using data of
T-bill rate spreads between 3 and 6 months maturity; see left panel of Figure 3. The symmetric EGB2 (sym.) model
is subject to restriction ξ = ς . Asymptotic standard errors are provided in parentheses. Note: ∗ standard errors are not
reported for EGB2 due to numerical issues.

ω α β σ2 ν, ξ ς LL AIC BIC

Normal
0.609 0.679 0.553 1.763

-422.2 3.437 3.494
(0.154) (0.065) (0.087) (0.158)

Student’s t
0.353 1.567 0.714 0.516 2.632

-370.6 3.029 3.100
(0.104) (0.145) (0.052) (0.059) (0.330)

EGB2
∗ 0.421 0.432 0.710 1.394 0.181 0.154

-376.8 3.087 3.172

EGB2 sym.
0.319 0.441 0.714 1.400 0.172

-378.8 3.095 3.167
(0.054) (0.029) (0.031) (0.177) (0.019)
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Figure 3: Data of T-bill rate spreads between 3 and 6 months maturity with the corresponding filtered
location ft of the Normal, Student’s t and EGB2 models (left), and the corresponding estimated
response curves (right).

Score-Driven Scale Models

Score-driven scale models have been widely studied in the literature. The conditional volatility

model with the Student’s t density, as discussed in both Harvey and Chakravarty (2008) and Creal

et al. (2008), is one of the first compelling applications of score-driven models. In a similar way as

for location models, score-driven scale models with fat-tailed innovations lead to filters that are

robust against large observations. For financial data, robustness of the scale or volatility filter is

especially relevant as the data tends to contain many “outliers” which do not necessarily imply a

fundamental change in the underlying conditional volatility. However, it is important to emphasize

that the potential robustness property of the resulting volatility filters is by no means the only

motivation for considering score-driven scale models.

This section reviews univariate score-driven scale models. Artemova et al. (2022) considers

multivariate scale models in which multiple volatilities and correlations can be modeled jointly.

Univariate Scale Models

For a univariate (demeaned) observation yt, the conditional univariate scale is denoted by ft and the

basic score-driven scale model is formulated as

yt = f
1/2
t εt , (7)

where {εt}t∈Z is an i.i.d. sequence with mean zero such that E(yt|Ft−1) = 0. When the variance of

εt is equal to one, the model (7) reduces to a volatility model where ft is equal to the conditional
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variance, that is Var(yt|Ft−1) = ft. However, this restriction is not necessary, the variance of εt could

even be infinite. Instead of using demeaned observations, it is straightforward to extend the model to

allow for a non-zero mean µ and for autoregressive or ARMA dynamics in the observation equation.

To keep this treatment simple, assume that observations yt are generated by model (7).

A basic illustration is obtained by taking εt ∼ N (0, 1) for every t. If the conditional variance ft

is updated according to the score-driven framework in (1), with scaling factor St = I−1t|t−1 = 2f 2
t , the

updating equation becomes

ft+1 = ω + α(y2t − ft) + βft (8)

where ω > 0, α ≥ 0 and β ≥ α to ensure positivity of ft. It is not hard to see that the resulting model

is equivalent to a regular GARCH model of Bollerslev (1986) with parameters α and β−α. There are

certain parameter restrictions that impose stationarity and filter invertibility (Straumann and Mikosch,

2006). If instead a Student’s t distribution with ν > 0 degrees of freedom is considered, without

changing the updating equation of ft, the resulting model is the GARCH-tmodel of Bollerslev (1987).

However, in case a score-driven updating equation is used, the resulting model departs from the

regular GARCH framework, because then:

ft+1 = ω + α

(
(1 + ν)ν−1y2t
1 + ν−1y2t /ft

− ft
)

+ βft , (9)

where ω > 0, α > 0 and β ≥ α, to impose positivity, and where the used scaling factor St = 2f 2
t is

proportional to the inverse of conditional information matrix; see Table 2. Notice that this model is

not based on a standardized Student’s t distribution and that ν > 2 is not required, which is why this

model is referred to as a scale model rather than a volatility model. Using a standardized Student’s

t distribution with unit variance is also possible; see Creal et al. (2013) for an example. Similar

to the Student’s t location model in (2) and (4), it is clear that for finite values of ν, large values

of y2t are downweighted, unlike in the Gaussian scale model. For ν → ∞ the updating function

becomes identical to (8), which also follows from the fact that the Student’s t distribution reduces

to a Gaussian distribution in that case. Blasques et al. (2022) give (parameter) restrictions for filter

invertibility, consistency and asymptotic normality of the MLE for this model in their main example.
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Univariate Log-Scale Models

A point of concern for scale models is that filtered conditional volatilities should be strictly positive.

In score models, the positivity of the conditional volatility can be typically ensured by imposing

appropriate parameter restrictions. To avoid having to impose positivity restrictions on the parameters,

it may be convenient to choose a different parametrization, where the logarithm of the scale is modeled

instead of the scale itself. An advantage of this choice of parametrization is also that the stationarity

condition is relatively straightforward, as it will simply be |β| < 1. So instead of modeling the scale

ft = σ2
t in yt = σtεt, the log scale ft = log(σ2

t ) is modeled now, which gives the following log scale

model

yt = exp

(
1

2
ft

)
εt , (10)

where εt is again i.i.d. with mean zero and where ft is updated according to (1) based on the

distribution of the innovations. So if εt has unit variance, then exp(ft) = Var(yt|Ft−1). Creal et al.

(2013) state that the score-driven log scale model is equivalent to the well known EGARCH model

of Nelson (1991) if εt has an asymmetric Laplace distribution. For a selection of other distributions,

Table 2 reports the score ∇t and the conditional information matrix corresponding to the log scale

parametrization. As was pointed out before, the conditional information matrix does not depend on

ft in this case, so the choice of scaling is less critical here. For example, using the Student’s t

distribution leads to:

ft+1 = ω + α

(
(1 + ν)

ν−1y2t / exp(ft)

1 + ν−1y2t / exp(ft)
− 1

)
+ βft , (11)

for a scaling factor equal to St = 2; see Creal et al. (2011, 2013) and Harvey (2013, Chapter 4). In

the latter reference, the model is referred to as the Beta-t-EGARCH model since the fraction in the

score function has a Beta distribution, if evaluated at the true parameter. This property makes it a

theoretically appealing model because the asymptotic properties of the ML estimator of the

parameter vector in this model can be derived in a convenient manner; see Harvey (2013, Section

4.2). This model has been adopted in many empirical studies in the literature, and it has been shown

to outperform the regular GARCH and GARCH-t models in most of these studies; see, for example,

Harvey and Sucarrat (2014), Blazsek et al. (2016) and Catania and Nonejad (2020).
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Figure 4: News impact curves of different score-driven log scale models. News impact curves (i.e. the
plots of the score ∇t as a function of the standardized observations yt/ exp(ft/2) ) corresponding to the log scale model
(10) for the Gaussian distribution (with σ2 = 7/5), the Student’s t distribution (with ν = 7) and the symmetric EGB2
distribution (with ξ = ς ≈ 1.874), all with variance 7/5.

Table 2 also gives the score of the EGB2 log scale model. The corresponding score-driven model

is discussed briefly in Caivano and Harvey (2014), for a slightly different parametrization and with

the main focus on a model where both the location and scale are score-driven.

Figure 4 plots the news impact curves (NIC) of score-driven log scale models with a normal,

Student’s t and EGB2 distribution with the same variance. The NIC is calculated by evaluating the

score ∇t as a function of the standardized observations yt/ exp(ft/2). The bounded score of the

Student’s t distribution reflects the fact that it is a fat-tailed distribution and therefore large

observations do not imply a proportionally large increase in the underlying volatility process. On the

contrary, the score of the EGB2 distribution does diverge, which reflects the exponential tails of the

distribution. This divergence is linear instead of a quadratic, which reflects that it has excess

kurtosis. It is interesting to compare the shape of these NICs to those of the location model that were

plotted in Figure 2.

A more flexible alternative to the Student’s t distribution is the generalized t distribution proposed

by McDonald and Newey (1988). Harvey and Lange (2017) consider a score-driven scale model

based on this distribution. The corresponding predictive density for two positive shape parameters ν

and h is given in Table 2. For h = 2 this is a regular Student’s t distribution with ν degrees of freedom,

while a GED distribution with parameter h is obtained if ν →∞. The GED with ν = 2 is the normal

distribution, whereas ν = 1 results in a Laplace distribution. Table 2 presents the predictive density,

score and information matrix for a log scale model under the GED. The updating of the log scale
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parameter ft of the score-driven model based on the generalized t distribution is given by:

ft+1 = ω + α

(
(ν + 1)

(
|yt| exp(−1

2
ft)
)h
/ν

1 +
(
|yt| exp(−1

2
ft)
)h
/ν
− 1

)
+ βft ,

using St = 2. So it is clear that this update has the same robustness properties as the Student’s t

scale filter in (11) as long as ν < ∞, because in that case the score is bounded. Harvey and Lange

(2017) provide explicit asymptotic results for the distribution of the ML estimator. They also propose

Likelihood Ratio (LR) and Lagrange Multiplier (LM) tests for the null hypothesis of thin tails (that is

ν →∞) against the alternative hypothesis of fat tails (that is ν <∞).

Univariate Log-Scale Models with Skewness

Another way to introduce flexibility into the score-driven model is to use a skewed error distribution.

For instance, Harvey and Sucarrat (2014) consider constructing score-driven scale models based on

distributions skewed by the method of Fernández and Steel (1998). Any probability density function

pε(ε) that is unimodal and symmetric around zero, can be converted to a skewed density function as

follows:

p(εt) =
2

γ + γ−1
pε

(
εt

γsgn(εt)

)
,

where 0 < γ < ∞ is the skewing parameter, and for γ = 1, γ < 1 and γ > 1 the distribution is

symmetric, left and right skewed, respectively. If this skewing method is applied to the Student’s t

distribution, the score is given by

st =

(ν + 1)
y2t /(νγ

−2 exp(ft))

1+y2t /(νγ
−2 exp(ft))

− 1 , yt < 0 ,

(ν + 1)
y2t /(νγ

2 exp(ft))

1+y2t /(νγ
2 exp(ft))

− 1 , yt ≥ 0 .

It follows that skewing the distribution directly induces asymmetry in the score and therefore in the

update of the log scale parameter ft. Figure 5 presents a plot of the news impact curve for some

different choices of γ. It is clear that for γ < 1, negative values are downweighted more, whereas

positive values are downweighted less than for the symmetric distribution. Hence, under negative

skewness, the score update takes into account that positive values are relatively less common than

negative values of the same magnitude and should therefore receive a relatively higher weight. The
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Figure 5: News impact curves of score-driven log scale model for the skewed t distribution. News
impact curves (i.e. the plots of the score ∇t as a function of the standardized observations yt/ exp(ft/2) ) corresponding
to the log scale model (10) for the skewed Student’s t distribution with ν = 6 degrees of freedom and for different values
of skew parameter γ.

asymptotic results of the symmetric score-driven Student’s t log scale model generalize

straightforwardly to this skewed variant. The same skewing approach can be used for other

distributions such as the GED.

It is important to realize that because of the skewness, the expectation of the innovations is no

longer equal to zero, which can be solved by reformulating the observation equation of the model as

yt = exp

(
1

2
ft

)
(εt − µε) (12)

where µε = E[εt]. The score and thereby the updating equation of ft must be altered accordingly. A

more detailed discussion is provided by the study of Harvey and Sucarrat (2014, Section 4); in their

empirical study they show that the score-driven skewed t model generally outperforms competing

models, including alternative skewed models such as the GJR GARCH model (Glosten et al., 1993)

with skewed innovations and the Normal Mixture GARCH model (Alexander and Lazar, 2006).

There are also alternative ways to skew a distribution. For example, Harvey and Lange (2017)

consider a score-driven scale model based on a skewed Generalized t distribution, using the skewing

method of Zhu and Galbraith (2010), which uses a slightly different parametrization than that of

Fernández and Steel (1998). Furthermore, not only skewness is introduced, but also the shape

parameters ν and h are allowed to have a different value above and below zero. So apart from

skewness, a more explicit form of asymmetry is introduced to the distribution as well. Harvey and

Lange (2017) demonstrate that the resulting score-driven model works well in practice, although it is

recommended to simplify it by testing different parameter restrictions using LR, Wald or LM tests.
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Volatility in Mean

Multiple extensions of score-driven scale models have been proposed in the literature. As an

illustrative example, consider the volatility-in-mean model proposed in Harvey and Lange (2018).

This model alters the log specification of the ARCH in mean (ARCH-M) model of Engle et al.

(1987) to have score-driven updating of the standard deviation. So instead of the regular log scale

specification in (10), now the time-varying scale parameter exp(0.5ft) also occurs in the mean

equation of the observations yt:

yt = µ+ λ exp

(
1

2
ft

)
+ exp

(
1

2
ft

)
εt ,

where the innovation sequence {εt}t∈Z is i.i.d. with mean zero and fixed variance, and where the

dynamics of ft are again score-driven as in (1). Here µ and λ are fixed but unknown coefficients that

determine the level and the ‘ARCH-M’ effect, respectively. The motivation for including the

conditional scale parameter in the mean equation is that volatility of stock returns tends to be

positively correlated with the level of the returns, because the equity risk premium increases if

uncertainty rises.

When the innovations εt are Student’s t distributed with ν degrees of freedom, Harvey and Lange

(2018) show that,

st = (ν + 1)bt − 1 + λ(1− bt)
ν + 1

ν

(
yt − µ

exp(1
2
ft)
− λ
)
, where bt =

(
yt−µ

exp( 1
2
ft)
− λ
)2
/ν

1 +
(

yt−µ
exp( 1

2
ft)
− λ
)2
/ν

.

If λ = 0 (and µ = 0), the regular log scale update of (11) is recovered. In practice, the last term of

the score has little impact on the filter, because λ is typically very small. Harvey and Lange (2018)

derive theoretical properties for the resulting model, including moments and asymptotic results of the

maximum likelihood estimator.

Illustration: Electricity Spot Price Returns

To demonstrate the robustness property of score-driven scale models with heavy-tailed distributions,

this section compares the Gaussian and Student’s t volatility model for a time series of electricity

spot price returns1.. The data under consideration is a sequence of daily returns of the PJM electricity
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Figure 6: Electricity prices and returns. The average daily electricity price in the market of the PJM market from
06-04-2008 up to 31-12-2013 (left panel) and the corresponding returns (i.e. (pt−pt−1)/pt−1 where pt denotes the price)
scaled by a factor of ten (right panel).

market, which serves 13 states in the United States. The data3. span from 06-04-2008 to 31-12-2013

(2096 observations). Electricity prices are known to show occasional extreme behaviour in the form of

sudden positive spikes, after which they quickly move back to the pre-spike level. The primary cause

of this is the non-storability of electricity; see e.g. Escribano et al. (2011). In effect, the returns based

on these prices also display these incidental “outliers”. Figure 6 clearly shows that these properties

are observable for the prices and returns currently under consideration. Models that are robust to

sporadic extreme observations, such as the Student’s t score-driven model, are thus most likely to be

valuable in modeling conditional volatility dynamics of these data.

Consider the log scale specification in (10) with a non-zero mean µ: yt = µ + exp(1
2
ft)εt . The

scaling factor is chosen to be equal to the inverse of the conditional information matrix, St = I−1t|t−1.
Table 2 reports the score and information matrix of the Gaussian and Student’s t distribution that were

used to construct the models.

The resulting maximum likelihood estimates are reported in Table 3 alongside the corresponding

likelihood-based criteria. According to both reported information criteria, Akaike’s information

criterion (AIC) and the Bayesian information criterion (BIC), the Student’s t model has a better

Table 3: Maximum likelihood estimation results The parameter estimates from the score-driven Gaussian
and Student’s t volatility models, for the PJM electricity price returns as presented in Figure 6. Standard errors are in
parentheses.

µ ω α β ν LL AIC BIC

Gaussian
0.316 0.125 0.074 0.927

-4770.5 4.56 4.57
(0.063) (0.058) (0.034) (0.033)

Student’s t
0.031 0.091 0.073 0.916 4.354

-4611.5 4.41 4.42
(0.052) (0.120) (0.048) (0.110) (0.459)
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Figure 7: News impact curves of estimated models log scale models. The news impact curves (i.e. the
estimated response αst as a function of the standardized observations yt/ exp(ft/2) ) corresponding to the Gaussian and
Student’s t score-driven volatility models fitted to PJM electricity spot price returns.

in-sample log likelihood value than the Gaussian model, taking into account that the former model

has one extra parameter. The estimates of α and β are similar for both models, but because the

estimated degrees of freedom parameter ν is small, the two resulting models are inherently different.

Figure 7 shows the news impact curves of the estimated models. The estimated degrees of freedom

parameter ν is low, so the estimated error density has heavy tails, and therefore the score update of

the Student’s t model is robust to large values. This is visible in the figure, as the response value

corresponding to this model is bounded by a constant value. For the Gaussian model, this is not

the case, because the response increases at a quadratic rate as yt grows. Figure 8 shows the filtered

volatility corresponding to the two fitted models alongside the absolute returns. As the news impact

curves indicate, the filtered volatilities of the Gaussian model are impacted more by large observations

than those of the Student’s t model. After a spike in the returns, it takes a while for the Gaussian

filtered volatility to move back to the pre-spike level. The filtered volatilities of the Student’s t model

also react to large observations, but in a less extreme manner. A spike in the returns does not indicate

a large change in the underlying volatility process, given the fact that prices quickly move back to

their original level. Therefore, the robust volatility filter of the score-driven Student’s t model seems

to be more suitable than the non-robust filter of the Gaussian model, since the former is less sensitive

to these temporary increases in the returns.
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Notes

1. The code developed for both illustrations are made available on the GAS website, in

the code section.

2. The 6-month minus 3-month treasury bill rate [TB6M3Mx] was obtained from the

FRED-QD database of McCracken and Ng (2020). The data were multiplied by a

factor of 10 for scaling purposes.

3. Data were retrieved from the PJM website. Daily prices pt are constructed as the

average of the hourly prices of each day. The corresponding returns were calculated as

(pt − pt−1)/pt−1 and multiplied by 10 for scaling purposes.
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