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Summary

The flexibility, generality and feasibility of score-driven models have contributed much to the
impact of score-driven models in both research and policy. Score-driven models provide a uni-
fied framework for modeling time variation in parametric models. Unlike many other parametric
models, given predictive likelihood score-driven models provide a flexible and intuitive way of
modeling the dynamics while keeping estimation procedure and inference relatively simple. The
developments in the theory and methodology of score-driven models made this class of models
even more appealing. This led to new formulations of empirical dynamic models which are of
relevance in economics and finance. In the context of macroeconomic studies, the key examples
are nonlinear autoregressive, dynamic factor, dynamic spatial, and Markov switching models. In
the context of finance studies, the major examples are models for integer-valued time series, mul-
tivariate scale models, and dynamic copula models. In finance applications, score-driven models
are especially important since they provide updating mechanisms for time-varying parameters that
limit the effect of the influential observations and outliers that are often present in financial time
series.
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Score-Driven Models: Why, Where, and When to Use

Score-driven models have been introduced by Creal et al. (2013) and Harvey (2013) where a unified

framework for modeling time-varying parameters is provided within an observation-driven approach.

A review and a treatment of the methodological and theoretical aspects of score-driven models are

provided by Artemova et al. (2022). The key principle of using the score function of the predictive

likelihood as the driving mechanism for time-varying parameters in a model can be exploited for

many different and important purposes in empirical studies related to the fields of economics and

finance.

An extensive and up-to-date list of score-driven models proposed in the literature can be found

online at http://www.gasmodel.com/. It includes contributions on linear and nonlinear re-

gression models with time-varying coefficients for location and scale, but also dynamic models with

time-varying higher order moments, and dynamic mixture distributions models. During the 2008–

2022 period, many researchers have contributed to this field of research. This chapter aims to present

an overview of these developments together with illustrations which are relevant for empirical studies

in economics and finance.

The score-driven model belongs to the class of observation-driven models as defined by Cox

(1981). The dynamic features of an observation-driven model rely on time-varying parameters which

are defined as functions of past observations. Hence, the time-varying parameter is perfectly one-

step-ahead predictable given the past information. It also implies that the likelihood function of the

model is available in closed form, whether or not the model is non-Gaussian, is based on nonlin-

ear relations, and/or relies on complex updating equations. As a result, the computational cost of

parameter estimation using the method of maximum likelihood is relatively low when compared to

the class of parameter-driven models. In the parameter-driven class, the time-varying parameter is

a dynamic function of stochastic error terms which need to be integrated out from the joint den-

sity of observations and dynamic parameters to obtain the likelihood function. This integration task

requires typically intensive computational simulation-based methods when the model departs from

linear and Gaussian structures; see Gouriéroux and Monfort (1997) and Durbin and Koopman (2000).

It is an important reason why observation-driven models, rather than parameter-driven models, are

increasingly used in applied econometric studies where the time-variation of parameters need to be

considered. The sub-class of score-driven models in the family of observation-driven models makes
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their use even more convenient as it offers sound updating mechanisms for time-varying parame-

ters while from the outset it is not always clear how to choose or design an updating function. The

score function provides a practical solution to this problem while it also has convenient optimality

properties as argued in Blasques et al. (2015).

Time-varying parameters are commonly associated with the mean (location) or the variance (scale)

of the observation density. However, score-driven models are not limited to their handling of time-

varying regression coefficients or time-varying conditional volatility. It is also recognized in the

literature that other features of the conditional observation density can be subject to time-variation.

For example, Diebold et al. (1994) and Filardo (1994) emphasize that for Markov switching models

it can be restrictive to assume a constant transition probability matrix. Also, Patton (2006) argues

for the importance of the copula parameter to be time-varying. In the model specifications discussed

in these contributions, the time-varying parameters are modeled as some function of the exogenous

variables and/or lagged dependent variable. The adopted model specification is usually motivated to

obtain an economic interpretation. However, in many situations the choice of updating equation, and

its functional form, are not immediately obvious. In such circumstances, the score-driven approach is

appealing as it provides a flexible and intuitive way of modeling time-varying parameters where the

updating equation exploits information from the whole density and is not based on a particular choice

from the set of first and higher order moments.

In general, the specification of the time-varying parameter update depends on the context of the

model but also on the empirical research question. The main purpose of the paper is to show that

the score-driven modeling approach can be easily incorporated into a range of models which play

an important role in empirical applications. However, the review is by no means exhaustive. In

the remainder of the Chapter, first, the general statistical formulation of the score-driven model is

introduced. Next, reviews of three groups of score-driven models are provided: (i) univariate models,

(ii) multivariate models, and (iii) models relevant for financial econometrics. In these three reviews,

the focus is on the relevant features and aspects of the score-driven modeling approach.

General Framework of Score-Driven Models

We present a general framework for the modeling of time-varying parameters based on the score func-

tion of the predictive likelihood function which is used as a driver for the updating of the time-varying

parameters. The score function can be with respect to the parameter directly or to a monotonic trans-
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formation of the parameter through a link function. The score-driven modeling approach originates

from Creal et al. (2013) and Harvey (2013). A theoretical and methodological review of score-driven

models can be found in Artemova et al. (2022).

The time-varying parameter is denoted by ft and generally represents a p × 1 vector. The time-

varying parameter can also be a scalar then p = 1 and ft ≡ ft. The updating equation for ft is given

by

ft+1 = ω +Ast +Bft, st = St∇t, ∇t =
∂

∂ft
log p(yt|ft,Ft−1;ψ), (1)

where Ft−1 is the information set available up to time t−1, ω is a p×1 vector of constants,A andB

are p× p coefficient matrices, st is the scaled score of the predictive logdensity log p(yt|ft,Ft−1;ψ)

with respect to vector ft, St is the p×p scaling matrix, andψ is a vector of other static parameters. In

practical terms, the updating equation uses the score function of the predictive likelihood contribution

at time t as its driving mechanism. The time-varying parameter update simply uses a local score

measure as the innovation term. From the perspective of optimization, the parameter ft+1 is updated

in the direction of the “steepest” increase of the predictive likelihood at time t. The specification of

the linear updating function can be extended by including lags of st and ft in the updating equation

(1). This will also lead to more coefficient matricesA andB.

The typical specification for the scaling matrix St is given by

St = I−ζ
t|t−1, ζ =

{
0,

1

2
, 1

}
,

where It|t−1 is a Fisher information matrix and power ζ is a scalar. In case ζ ̸= 0, the score is cor-

rected for the local curvature of the predictive density and it ensures that st has a finite covariance

matrix. However, in many applications of empirical relevance, the Fisher information matrix is ana-

lytically intractable. In such cases, it is advantageous to use the identity matrix as the scaling matrix,

that is ζ = 0, or to rely on numerical integration methods for obtaining an estimate of It|t−1. An al-

ternative to overcome numerical challenges is to obtain an estimate of It|t−1 on the basis of a feasible

(approximate) information matrix; see Zhang et al. (2011) and Patton et al. (2019)). The choice of the

scaling matrix will be discussed case by case for the presented models.
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Univariate Score-Driven Models

The discussion starts with score-driven models in application to univariate time series. First, nonlin-

ear autoregressive models and models for integer-valued time series are considered. This is a natural

starting point given that these models are closely related to time-varying location models discussed in

Artemova et al. (2022). Next, score-driven dynamic Markov switching and mixture models are pre-

sented. The section ends with an empirical illustration of the score-driven dynamic Markov switching

model.

Nonlinear Autoregressive Models

Linear regression is probably the most widely applied statistical technique. Despite its simplicity,

this method can offer a surprisingly accurate fit and insight in multiple statistical and econometric

problems. This is the case also in time series analysis, where linear autoregressive (AR) models can

offer an exceptionally simple yet accurate way of modeling dynamics in the data. However, in many

applications it is important to account for time variation in regression coefficients which may occur

for multiple reasons, ranging from nonlinear relationships to structural changes in the data generating

process.

Consider the following linear AR(1) model with a time-varying autoregressive parameter,

yt = c+ ϕtyt−1 + εt, εt ∼ pε(εt,ψ),

where {yt}Tt=1 is the observed data, c is an intercept parameter, ϕt is a time-varying autoregres-

sive parameter, and εt is a mean-zero disturbance that is distributed with density pε(εt,ψ) which

is parametrized by the vector ψ. For simplicity, demeaned series yt are considered (c = 0) which can

be extended straightforwardly to allow for a non-zero mean.

The score-driven modeling framework provides an intuitive way for modeling the time-varying

parameter ϕt. Assume that εt is Gaussian with variance σ2 then the score-driven updating equation

for ϕt ≡ ft is as follows:

ft+1 = ω + α (yt − ftyt−1)
yt−1

σ2
+ βft,

where the scaling St = 1 is used. The score expression results in an update for ft which is governed

by the term (yt − ftyt−1)yt−1, with the magnitude of the adjustments being determined both by α and
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1/σ2. The term (yt − ftyt−1)yt−1 can be seen as an estimate of the covariance between yt−1 and the

error term (yt−ftyt−1), based on a single observation. The time-varying parameter ft is thus adjusted

to ensure that the error term is orthogonal to yt−1.

For time series that contain influential incidental points and outliers, it can be beneficial to model

the innovations by the Student’s t distribution, εt ∼ tλ(0, σ
2). The score-driven modeling framework

automatically ensures that the impact of these observations on the update of ft is bounded since the

score function takes the following form,

∇t =
λ+ 1

λσ2
wt(yt − ftyt−1)yt−1,

wt =

(
1 +

(yt − ftyt−1)
2

λσ2

)−1

,

where the magnitude of the adjustment also depends on the weight wt so that the effect of the score

on the update is limited. The weight wt plays a similar role as in location score-driven models with

Student’s t innovations discussed in Artemova et al. (2022).

In the discussion, the dynamics of ϕt are modeled “directly”. Alternatively, the dynamics of ϕt

can be modeled using a link function, ϕt = h(ft), as proposed by Blasques et al. (2020). For example,

in practice it is often desirable to rule out negative temporal dependence. For this, the exponential link

function h(ft) = exp (ft) can be used. To rule out both negative temporal dependence and explosive

behaviour while allowing for the near unit-root dynamics in yt, the logistic function h(ft) = [1 +

exp (−ft)]
−1 ∈ (0, 1) can be considered. The use of the transformation function should be properly

accounted in the updating equation, see Blasques et al. (2020) for the details. In addition, extra

flexibility can be achieved by allowing time variation in the conditional volatility of the innovations,

see Delle Monache and Petrella (2017). Modeling interaction between time-varying autoregressive

coefficient and volatility can be of great importance in macroeconomic applications.

Models for Integer-Valued Time Series

Discrete-valued time series are often encountered in empirical applications. For instance, they can

play important role when considering crime and transaction data. Observation-driven models have

been successfully applied in these situations. For example, Fokianos et al. (2009) and Zhu (2011)

model time series of counts using conditional Poisson and negative binomial (NB) distributions, re-

spectively, and the dynamics of the conditional mean parameter is modeled using the lags of the
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dependent variable. This approach can be further generalized by means of the score-driven modeling

methodology.

Specifically, Blasques et al. (2018) and Harvey and Kattuman (2020) model transaction data as

well as data on coronavirus deaths using a score-driven model with a negative binomial distribution,

yt|Ft−1 ∼ NB(λt, r),

where {yt}Tt=1 is a time series, r > 0 is the dispersion parameter, and λt is a time-varying location

parameter. The updating equation for the reparameterized time varying parameter ft, where λt =

h(ft), directly follows from the score of the predictive likelihood, which is given by,

∇t = λ−1
t (yt − λt)(rλt + 1)−1∂h(ft)

∂ft
, (2)

where the link function h(ft) is used to ensure that λt > 0. Multiple link functions h(·) can be

employed, such as an exponential function λt = exp(ft). The score scaled by the inverse Fisher

information matrix is then given by,

st =
yt − exp(ft)

exp(ft)
, since It|t−1 = λt(rλt + 1)−1.

Score-driven model can also accommodate an updating equation which can account for the pres-

ence of many zeros in the data. Blasques et al. (2018) consider a zero-inflated negative binomial

distribution which properly treats zero values without any information loss. Particularly,

yt ∼ 0 with probability π,

yt|Ft−1 ∼ NB(λt, r) with probability 1− π,

where π ∈ [0, 1) denotes the probability of zero values. The score update naturally incorporates

information from the density (a mixture of densities in this case) into the update for λt. When yt ̸= 0

the score expression is the same as in (2). However, zero observations are treated differently:

∇t =
π − 1

(rλt + 1)(1 + π(rλt + 1)1/r − π)

∂h(ft)

∂ft
for yt = 0,

meaning that the score expression also depends on the probability π of a zero value. When π = 1 it
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implies that ∇t = 0, hence the score contribution for the update is equal to 0. In turn, when π = 0

the score simplifies to (2) with yt = 0.

For count data with extreme observations, Gorgi (2020) introduced a new general class of observation-

driven models. The idea is to model the data based on a heavy-tailed mixture of negative binomial

distributions, known as the beta negative binomial (BNB) distribution,

yt|Ft−1 ∼ BNB(λt, r, ϕ),

where r > 0 is the dispersion parameter and ϕ > 1 is the tail parameter. The dynamics of λt are

in turn modeled using an observation-driven updating equation. Specifically, the parameter can be

updated based on the score of the predictive likelihood. The score-driven update ensures that the

dynamics for λt is itself robust to outliers in yt since it exploits relevant information from the BNB

density. The BNB score-driven model is general enough since in the limit, when the tail parameter

ϕ → ∞ and the dispersion parameter r → ∞, the model approximates the Poisson autoregressive

model and the score-driven-INAR model with NB distribution, introduced in Gorgi (2018).

Score-Driven Dynamic Markov Switching and Mixture Models

Markov switching models, introduced by Hamilton (1989), have proven to be useful in capturing

changes in the level, volatility, or dependence structure of time series. In economics and finance,

changes may occur due to policy changes or other influential and disruptive events. In particular,

this class of models allows for switching between regimes according to transition probabilities that

are estimated from the data. Typically, such transition probabilities are, however, assumed to be

static. This can be restrictive in many applications, as highlighted by Diebold et al. (1994), Filardo

(1994) and Haas et al. (2013). To relax these assumptions Bazzi et al. (2017) and Catania (2019)

introduced dynamic Markov switching model and dynamic adaptive mixture model, respectively. In

these models, time-varying parameters are modeled using a score-driven framework which provides

an intuitive functional form for the time-varying parameter update. In the model of Catania (2019), the

mixture components can be any parametric distribution with the possibility of allowing parameters

of the distributions to be time-varying. Parameters of the mixture component and the weights are

modeled using the score-driven framework. In turn, Bazzi et al. (2017) introduced a dynamic Markov

regime switching model where the transition probability from one state to another changes over time.
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Further discussion is based on the model of Bazzi et al. (2017). For simplicity, the focus is on the

case with two regimes/states which can easily be generalized to a case with more states. The idea is

to model the dynamics of the transition matrix Πt,

Πt =

π00,t π01,t

π10,t π11,t

 =

 π00,t 1− π00,t

1− π11,t π11,t

 ,

where 0 < π00,t, π11,t < 1 denote the probabilities of staying at the same state. The transition proba-

bilities are parameterized using a logistic link function to ensure that they lie in the (0, 1) interval,

πii,t =
exp(−fi,t)

1 + exp(−fi,t)
, i = 0, 1,

and then ft = (f0,t, f1,t)
′ is modeled using the score of the predictive likelihood and is updated

according to equation (1). The two other probabilities π01,t and π10,t for the state switches follow

straightforwardly since probability of switching from state 0 to 1 is equal to 1 − π00,t and from state

1 to 0 is equal to 1− π11,t.

To obtain the score, first the expression for the predictive likelihood needs to be derived. The

conditional density of yt is essentially a mixture of two distributions,

p(yt|Ft−1;ψ) = p(yt|θ0,Ft−1;ψ)P (zt = 0|Ft−1;ψ) + p(yt|θ1,Ft−1;ψ) (1− P (zt = 0|Ft−1;ψ)) ,

where yt is a time series, zt is an unobserved discrete Markov chain stochastic process, θi are regime-

specific parameters (i = 0, 1) and ψ contains static parameters.

Naturally, the predictive probability P (zt = 0|Ft−1;ψ) can be obtained using a Hamilton filter,

P (zt = 0|Ft−1;ψ) = π00,tP (zt−1 = 0|Ft−1;ψ) + (1− π11,t)P (zt−1 = 1|Ft−1;ψ),

where π00,t and π11,t are functions of the time-varying parameters f0,t and f1,t, respectively. The

filtered probability P (zt−1 = 0|ψ,Ft−1) can be obtained using law of conditional probability and

noticing that Ft−1 = Ft−2 ∪ yt−1.
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Then the score vector ∇t of the predictive loglikelihood is given by,

∇t =
p(yt|θ0,Ft−1;ψ)− p(yt|θ1,Ft−1;ψ)

p(yt|Ft−1;ψ)
× g(ft,ψ,Ft−1),

g(ft,ψ,Ft−1) =

 P (zt−1 = 0|Ft−1;ψ)π00,t(1− π00,t)

−P (zt−1 = 1|Ft−1;ψ)π11,t(1− π11,t)

 .

(3)

The score expression has a very intuitive interpretation. If the scaled difference between p(yt|θ0,Ft−1;ψ)

and p(yt|θ1,Ft−1;ψ) is positive, then in the next period one should expect an increase in f0,t and a

decrease in f1,t. In other words, the probability π00,t is updated positively if it is more likely that in the

previous period observations were sampled from p(yt|θ0,Ft−1;ψ) rather than from p(yt|θ1,Ft−1;ψ),

and vice versa. In turn, the magnitude of the updates is controlled by the term g(ft,ψ,Ft−1). To be

more precise, it is controlled by the filtered conditional probabilities of being in regime 0 or 1. This

means that if state 0 was not visited by the chain at time t−1, that is, P (zt−1 = 0|Ft−1;ψ) = 0, there

is no relevant information for π00,t update, while a large step is taken to update π11,t. Hence, if there

is certainty about being in regime zt−1 = 1, then the filter can “learn” from the data about π11,t but

not much about π00,t.

Interestingly, the score expression in score-driven Markov switching models is very similar to the

one obtained in the mixture model of Catania (2019). Specifically, for the case with two regimes,

Harvey and Palumbo (2021) show that the score expression is of the following form,

∇t =
p(yt|θ0,Ft−1;ψ)− p(yt|θ1,Ft−1;ψ)

p(yt|Ft−1;ψ)
× πt(1− πt), (4)

where in the case of the mixture model πt is the probability of being in state one at time t. The

score expressions (3) and (4) are almost the same except that in Markov switching model the filtered

probabilities P (zt−1 = i|Ft−1;ψ) also enter the score expression. This is not surprising since, in

contrast to the mixture model, in the Markov switching model the latent process is assumed to be a

Markov chain. Apart from this, these two score-driven models are closely related to each other.

Illustration: Unemployment Rate

To demonstrate the flexibility of the score-driven modeling approach, an empirical illustration in

application to the changes in the US unemployment rate during the period 1960-2019 is considered1..
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To illustrate the advantages of the score-driven model, the comparison is made between the classic

static Markov switching model and the score-driven dynamic Markov switching model. For both

models, a model specification with four states was found to capture the dynamics of the series well.

Particularly, two regimes for the time-varying mean (low µ1,t and high µ2,t mean regimes) and two

regimes for the volatility (low σ2
1 and high σ2

2 volatility regimes) are considered. The mean in regime

i is modeled as an autoregressive process with regime-specific coefficients: µi,t = ϕ0i + ϕ1iyt−1 +

ϕ2iyt−2. For the volatility, the transition probabilities Πσ
t are allowed to be time-varying and are

modeled using score-driven dynamics, whereas in the classic Markov switching model the transition

probabilities Πσ are assumed to be static. Hence, the transition matrix is of the following form:

Πt = Πµ ⊗ Πσ
t , Πµ =

 πµ
11 (1− πµ

11)

(1− πµ
22) πµ

22

 , Πσ
t =

 πσ
11,t (1− πσ

11,t)

(1− πσ
22,t) πσ

22,t

 ,

The results are demonstrated in Figure 1. The smoothed probabilities of being in the high mean

regime are almost the same for the two models. Indeed, both models capture well the increases in the

unemployment rate, which coincide with the periods of the US recessions. The similarity of the results

is not surprising since the transition probabilities for the mean are not time-varying in either model.

In contrast, the results for the smoothed high variance regime are different between the two models.

Specifically, around the period 1975-1990 there were several consecutive recessions and there are

several spikes in the squared time series. The score-driven dynamic Markov switching model is able

to distinguish between these four recession episodes, while the static Markov switching model does

not adapt. This difference occurs due to the fact that in the score-driven dynamic model the filtered

high variance probability decreases during the period 1975-1990, meaning that probability of staying

in the high volatility regime becomes lower. In contrast, in the static model, the probability cannot

change over time. Similar pattern appears around 2010. Therefore, the dynamic score-driven Markov

switching model provides an extra layer of flexibility in capturing regimes, which is important in

economic applications.

Multivariate Score-Driven Models

The functionality of the score-driven modeling approach is not limited to univariate time series and

can also be considered in the multivariate time series applications. While the data is multivariate, the
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(b) Smoothed High Variance Regime
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Figure 1: Empirical illustration: score-driven dynamic Markov switching model.
Shaded areas correspond to the US recessions according to the NBER.

time-varying parameter can still be a scalar. The models under consideration are popular in economic

and finance-related applications.

Score-Driven Dynamic Factor Models

Dynamic factor models are widely used in econometrics as a convenient way to capture common

dynamics and cross-sectional dependence across multiple time series. The use of common factors

is especially beneficial when the cross-sectional dimension of the dataset is large. In the literature,

factors are usually modeled using a parameter-driven approach as in Doz et al. (2012) where factors
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have their own source of uncertainty. However, when innovations are non-Gaussian or the factors’

updating equation is non-linear, the likelihood is not available in a closed form. This results in a high

computational burden, especially when the dimension of the model is large. Alternatively, one can es-

timate the factors using principal component analysis as in Stock and Watson (2002). However, since

the factors are static, forecasts cannot be produced directly from the model and auxilliary regressions

are required to make predictions. In contrast, the score-driven dynamic factor model, proposed in

Creal et al. (2014), provides a unified framework for estimation and forecasting while keeping the

estimation procedure relatively simple.

Assume that the dynamics of the time series {yt}Tt=1 can be summarized by several common

factors ft which leads to the following observation equation:

yt = z +Zft + εt, εt ∼ pε(εt;Σ,λ),

where yt is an N×1 random vector, ft is a p×1 vector of latent factors,Z is an N×p matrix of factor

loadings, and z is an N × 1 vector of intercepts. The innovations εt are drawn from a multivariate

density pε(εt;Σ,λ) with an N ×N scale matrix Σ, and parameterized by the vector λ.

In case of Student’s t innovations with λ degrees of freedom, the likelihood contribution at time t

is as follows:

lt = log Γ

(
λ+N

2

)
− log Γ

(
λ

2

)
−1

2
log |Σ| − N

2
log(λπ)

− λ+N

2
log

(
1 +

(yt − z −Zft)′Σ−1(yt − z −Zft)
λ

)
.

Hence, the score expression takes the form,

∇t =
λ+N

λ
wtZ

′Σ−1 (yt − z −Zft) ,

wt =

(
1 +

(yt − z −Zft)′Σ−1(yt − z −Zft)
λ

)−1

.

(5)

An important feature of the score-driven factor model is that the presence of the time-varying weight

wt makes the dynamics of ft more robust against outliers and influential observations. Specifically,

“large” prediction errors εt lead to a small weight wt, consequently, down-weighting large positive

or negative observations in the update for ft. In turn, when λ → ∞ the score simplifies to that of a
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Gaussian model, and the factor is a linear function of the prediction error yt − z −Zft. Specifically,

when p = 1 and the scaling matrix St = I−1
t|t−1 the updating equation simplifies to,

ft+1 = ω + α
(
Z ′Σ−1Z

)−1
ZΣ−1 (yt − z −Zft) + βft,

where, intuitively, the update is based on the generalized least squares estimator. The equation can

also be interpreted as a scaled location model.

In factor models, both the factors and the loadings are unobserved and identified up to a rota-

tion. In score-driven factor models, the loadings also enter into the factors’ updating equation which

complicates the identification. Hence, to identify the model parameters several restrictions need to be

imposed. First, the data is usually standardized meaning that all series have sample mean equal to 0

and sample variance equal to 1. This implies that one can set z = 0 and ω = 0. Next, matricesA and

B are assumed to be diagonal. As for the loadings, the first p rows of the matrix of factor loadings,

Z, are restricted to have a form of lower-diagonal matrix with 1s on the diagonal.

In the paper, Creal et al. (2014) provide even a more general and flexible setup by allowing ob-

servations to be coming from different distributions which are linked to each other by a small set of

latent dynamic factors. They also consider a problem of missing observations which appear either

regularly due to different data sampling frequency or irregularly. Intuitively, when observations are

absent, their contribution to the likelihood is equal to 0 which also leads to a score contribution of

zero. Particularly, when all cross-sectional observations are missing at time t this implies that st = 0p.

Score-driven factor models are very attractive when datasets are large. For this reason, many

extensions have been developed in the literature. For example, when modeling the time-varying

covariance/scale matrix of a multivariate time series the number of parameters grows fast once more

series are added. To resolve this issue Creal et al. (2011) impose a factor structure on the time-

varying volatilities and/or time-varying correlations of the covariance/scale matrix of the multivariate

Student’s t distribution. The factors are driven by the score which bounds the effect of the extreme

observations and outliers. This is especially relevant in finance applications. An extension of this

model was further considered in Liu (2016).

Factor models can also be used to model time-varying default probabilities. For instance, Babii

et al. (2019) model default probabilities as a function of time-varying latent geographic and credit

score factors which are updated based on the score. In the paper, they demonstrate the computational
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benefits of using a score-driven approach in big data applications. Moreover, factor-augmented re-

gressions have proven to be successful in the forecasting literature. Gorgi et al. (2019b) and Blasques

et al. (2021) consider factor-augmented regressions models with score-driven factors when observa-

tions are of mixed frequency and the factors’ loadings are clustered, respectively. Finally, a score-

driven factor structure was exploited in copula models; see for example Oh and Patton (2017), Oh and

Patton (2018), and Opschoor et al. (2020). Since it is not computationally feasible to estimate copula

models when the cross-sectional dimension is large, these models are of great importance in applied

work.

Illustration: Global Commodity Price Indices

The empirical illustration presents an application of the score-driven dynamic factor model to the

analysis of the co-movements between global commodity price indices. The dataset under consid-

eration is similar to the one considered in Zhang and Broadstock (2020). It consists of seven major

commodity classes: Energy, Beverage, Fertilizers, Food, Metal, Precious metals, and Raw materials.

Similarly to Zhang and Broadstock (2020), monthly crude oil price data is used as a proxy for the

energy sector and monthly commodity price indices from the World Bank database are used for the

other six classes. The data spans the period from April 1983 untill February 20212..

Zhang and Broadstock (2020) document rising connectedness between the commodity prices.

This finding highlights the importance of studying the co-movements between the series. The score-

driven factor model with Gaussian innovations can be used to extract a factor that is common to all the

classes. The standardized series and the extracted common factor are presented in Figure 2. Clearly,

the estimated common factor captures well the co-movements between the series. It reveals a big

downturn during the 2008 recession and a somewhat smaller one during the COVID-19 recession.

This indicates that major co-movements between the commodity prices arise during the moments of

the economic downturns. Furthermore, all price indices seem to comove which is indicated by the

positive loadings on the common factor. Food, Raw materials and Metal are exposed the most to the

common factor as they have the largest loadings, while the Precious Metals are the least exposed.

Score-Driven Dynamic Spatial Models

In panel data applications, cross-sectional observations are often dependent. A spatial dependence

structure may emerge, for example, due to geographical proximity. Spatial models take into account
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Figure 2: Empirical illustration: score-driven dynamic factor model.
Estimated common factor for seven major commodity classes (left) and estimated loadings on the common factor (right).

Shaded areas in the left figure correspond to the US recessions according to the NBER.

the fact that “neighbouring” units might be more dependent and subject to spatial spillover effects.

To model spatial dependencies, the Spatial Durbin Model (Anselin, 1988), and multiple well known

extensions, are often considered. In these models, spatial dependencies are determined by a spatial

weighting matrix which is calibrated or estimated from relevant data, and assumed to be fixed over

time. This can, however, be restrictive in some applications.

Blasques et al. (2016) generalize the spatial Durbin model by allowing the spatial dependence

parameter ρ to be time-varying. In particular, Blasques et al. (2016) consider a spatial model given

by,

yt =Wtyt +Xtβ + εt, εt ∼ pε(εt;Σ,λ), t = 1, ..., T,

where Wt ≡ ρtW , yt is an N × 1 vector that consists of cross-sectional units that are subject to

spatial dependence, W is an N × N row-normalized matrix of exogenous spatial weights which

contains information about the “distance” between the units, Xt ≡ (ιN : Kt : WKt) consists of

an N × 1 vector of ones, N × k matrix of exogenous regressors Kt and their spatial lags WKt,

β ≡ (β1,β
′
2,β

′
3)

′ contains unknown parameters that correspond to Xt, and εt is an N × 1 vector of

innovations with multivariate density pε(εt;Σ,λ).

The idea is to model the dynamics of ρt using a score-driven model. Since the matrix W is

row-normalized, the spatial dependence parameter ρt should be smaller than one in absolute terms,

i.e. ρt ∈ (−1, 1). Specifically, ρt can be modeled as a bounded monotonic transformation of a time

varying parameter ft where the dynamics of ft are defined using the score-driven model (1).

To obtain the score updating equation, consider the time t contribution to the log-likelihood func-
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tion,

lt = logpε(yt − h(ft)Wyt −Xtβ,Σ;λ) + log |(IN − h(ft)W )|,

where the last term captures the non-linearity of the model in ρt = h(ft) and h(·) is a monotonic

transformation. A typical choice of the transformation function is the hyperbolic tangent function.

The expression for the score depends on the density pε under consideration. Possible choices are

Gaussian and Student’s t distributions. Particularly, when the disturbance vector εt is multivariate

Student’s t distributed with scale matrix Σ and degrees of freedom parameter λ, the score expression

is as follows:

∇t =

(
λ+N

λ

)(
wty

′
tW

′Σ−1 (yt − h(ft)Wyt −Xtβ)− tr (Z(ft)W )
)
· ∂h(ft)

∂ft
, (6)

wt =

(
1 +

1

λ
(yt − h(ft)Wyt −Xtβ)

′Σ−1(yt − h(ft)Wyt −Xtβ)

)−1

.

where Z(ft) = (IN − h(ft)W ). Therefore, the time-varying parameter ft is driven by past ob-

servations and it integrates both direct effects arising from changes in the explanatory variables and

indirect effects arising from the neighboring units. Intuitively, the score expression (6) is similar to

the score (5) in the factor model. However, there is an additional term tr((Z(ft)W ) that accounts for

the effects of feedback loops where unit i affects unit j and unit j also affects unit i. Similarly to the

score-driven factor model with Student’s t innovations, the presence of weight wt bounds the effect

of extreme observations on the update.

In practice, using this model one can account for time-variation in shock spillovers. In financial

applications, the parameter ρt can also be interpreted as a systemic risk measure or the market’s

perception of contagion. For example, there is evidence that sovereign and bank credit spreads in

Europe are strongly cross-sectionally dependent. Using dynamic spatial models applied to the Europe

sovereign and bank credit default swap (CDS) spreads, Blasques et al. (2016) and Foglia and Angelini

(2019) reveal that the intensity of the spatial dependence is time-varying and seems to respond to the

business cycle and policy measures implemented by the European Central Bank during the sovereign

debt crisis.

Furthermore, using a spatial score-driven model, Böhm et al. (2022) analyze the strength of the

business cycle synchronization in Europe. They find that the dynamics of the spatial dependence

parameter is cyclical and the business cycle synchronization in Europe is stronger during periods of
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financial distress. Moreover, to account for the global diffusion of shocks, Catania and Billé (2017)

extended the dynamic spatial model by introducing, in addition to global spillovers, spatial depen-

dence into the error term εt. Therefore, a change in the disturbance of a single location can produce

impacts on nearby disturbances.

Alternatively, one can allow for the spatial weight matrix W itself to be time-varying as in Billé

et al. (2019). Intuitively, while the geographical distance between units might not be changing over

time, the “spatial radius” within which neighbourhoods should be considered might be time-varying.

The weights of the N × N symmetric spatial weight matrix, W (γt,d), at time t can be modeled

as a monotonic decreasing transformation of a time-varying distance decay parameter γt and a static

N ×N distance matrix d, i.e. Wij,t ≡ h(γt, dij). The parameter γt then characterizes the importance

of higher-order neighbours: the lower γt the more important higher-order neighbours are. Possible

choices of transformation functions are h(γt, dij) = d−γt
ij and h(γt, dij) = exp (−γtdij) which ensure

that the larger the distance between the units the smaller the weight is.

This approach provides the “spatial radius” within which higher-order neighborhoods play an im-

portant role and hence defines the sparsity of the weight matrixW . Specifically, when the parameter

γt is low it means that higher order neighbours are important, which results in a non-sparse weight

matrix and vice versa. Since the choice of the weight matrix is not trivial, this approach allows flex-

ible specification of the weight matrix, and therefore it helps to avoid model misspecification due to

an incorrectly specifiedW .

Illustration: Credit Default Swap Spreads

The empirical illustration demonstrates the evolution of the systemic risk measure and the importance

of modeling time variation for parameter ρt. The dataset under consideration is similar to the one used

in Blasques et al. (2016) and it contains the sovereign CDS spreads data for six European countries:

Belgium, France, Germany, Italy, Portugal, and Spain. It spans the period from 1 January 2009 untill

31 December 2020, meaning that it covers both the period during the sovereign debt crisis in Europe,

as in Blasques et al. (2016), as well as the COVID-19 recession (Figure 3). The comparison is made

between four models: the static spatial Durbin model with Gaussian and Student’s t innovations, and

the score-driven dynamic spatial Durbin model with Gaussian and Student’s t innovations. From

Figure 3, it is apparent that the sovereign CDS spreads have several extreme observations. Therefore,

one would expect that the robust filter performs better.
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The advantage of using a Student’s t distribution for the innovations becomes immediately ev-

ident, since these models lead to substantially higher loglikelihood values and lower AICc values

(Table 1). Incorporating dynamics into the spatial parameter leads to even further improvements.

The estimated spatial parameter is demonstrated in Figure 3. Overall, the dynamics implied by the

Student’s t score-driven and Gaussian score-driven models are comparable. The results reveal a de-

crease in the spatial dependence after the European sovereign debt crisis, which is in line with the

findings in Blasques et al. (2016). The major differences between the models implied spatial depen-

dences occur during the COVID-19 pandemic. The Gaussian score-driven model reacts immediately

with a substantial increase in the dependence and after that it takes some time for the spatial depen-

dence parameter to decrease, while the Student’s t score-driven model bounds the influence of the

observations, which leads to a moderate increase in the spatial dependence.

static Gaussian static Student’s t score-driven Gaussian score-driven Student’s t
logL -54236.62 -53820.17 -46882.65 -46608.12
AICc 108493.2 107664.3 93787.29 93242.25

Table 1: Comparison of the likelihood and AICc values for static and dynamic spatial models.

Score-Driven Models in Financial Econometrics

The score-driven modeling approach can be incorporated in multivariate scale models and in dynamic

copula models. Such models are used heavily in methodological and empirical research related to

financial econometrics. Furthermore, many financial time series are subject to heavy noise and “out-

lying” observations which may require robust methods for their analysis. It is shown that score-driven

models are rather effective in the introduction of robustness features in models and methods which

are used regularly in financial econometrics.

Score-Driven Multivariate Scale Models

It is often important to jointly model the conditional volatilities and conditional correlations of a

group of assets. For example for effective risk management and asset pricing. A popular way to

jointly model volatilities are multivariate GARCH models, see Bauwens et al. (2006) for an overview.

Among this class of models, a highly successful model is the dynamic conditional correlation (DCC)

model of Engle (2002) which models the variances separately from the correlations. An alternative
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Figure 3: Empirical illustration: score-driven dynamic spatial Durbin model.
CDS spreads data for six countries (top) and estimated spatial parameter (bottom).

option is to use multivariate score-driven volatility models, which have the same advantages of the

univariate score-driven scale models extensively discussed in Artemova et al. (2022).

Let yt be an N -dimensional observation vector with mean zero and observation equation

yt =H
1/2
t εt,

where εt is i.i.d. and Ht is the conditional covariance matrix of yt. Ht is driven by the time-varying

parameter vector ft, i.e.Ht =H(ft). In turn, the dynamics of ft are modeled using equation (1).

There are numerous options for the functional link between the (multivariate) time-varying pa-

rameter ft and the covariance matrix Ht = H(ft). For instance, one can take ft = vech(Ht),

where vech vectorizes the lower-triangular part of a matrix. In many cases, however, it is preferred

to disentangle the volatilities and the correlations, to be able to model the correlations explicitly. For
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example, Creal et al. (2011) consider the following parameterization ofHt, which is also used for the

DCC model:

Ht =DtRtDt , (7)

where Dt is a diagonal matrix containing the standard deviations and Rt is a positive definite corre-

lation matrix. Either Dt or Rt, or both can be chosen to be time-varying. The correlation matrix Rt

can be decomposed as follows: Rt = ∆−1
t Qt∆

−1
t , where Qt is symmetric positive definite and ∆t

is diagonal with the square root of the diagonal elements of Qt on the diagonal. The time-varying

parameter ft can then be specified as

ft =

diag(D2
t )

vech(Qt)

 . (8)

If the innovations εt are multivariate standard normal, then the corresponding score is given by

∇t =
∂ log p(yt|ft,Ft−1;ψ)

∂ft
=

1

2
Ψ′

tD′
NH

−1
t ⊗H−1

t [wtvec(yty
′
t)− vec(Ht)] , (9)

Ψt = Ψ(ft) =
∂vech(Ht)

∂f ′
t

forHt =H(ft) , (10)

where DN is the duplication marix, i.e. DNvech(A) = vec(A), ⊗ is the Kronecker product and

wt = 1. The choice of parameterization of Ht is fully accounted for by the matrix Ψt. The value of

Ψt for the specific parameterization in (7) and (8) is provided by Creal et al. (2011, Equation (16)).

Interestingly, according to (9), regardless of the precise parameterization, the driving mechanism of

ft depends on the deviations of the outer product yty
′
t from the covariance matrixHt.

Creal et al. (2011) instead consider a standardized multivariate Student’s t with mean zero, vari-

ance IN and ν > 2 degrees of freedom, for which the score is also given by (9), but then for

wt = (ν + N)/(ν − 2 + y′
tH

−1
t yt). It is also possible to use a regular Student’s t distribution and

allow for ν ≤ 2, but then Ht should be interpreted as a scale matrix instead of a covariance matrix.

For the Student’s t distribution, the updating of ft depends on the deviations of the weighted outer

product wtvec(yty
′
t) from the covariance matrix vec(Ht). The weight wt decreases for large values

of y′
tH

−1
t yt, so it downweights large observations, much like the univariate Student’s t scale models

discussed in Artemova et al. (2022). It is also possible to consider other multivariate distributions for
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the innovations, such as the multivariate generalized t-distribution.

If Ht is parametrized as in (7) and (8), parameter restrictions on the coefficient matrices are

needed to ensure that the volatilities are positive and Qt is positive definite. Alternatively, diag(D2
t )

in (8) can be replaced by log(diag(D2
t )) to automatically ensure the positivity of the volatilities.

A disadvantage of the parameterization (7) and (8) is that the number of the time-varying factors

that drive the correlation matrixRt is greater than the number of free correlations inRt. This causes

the information matrix to be singular, so instead of the inverse, a pseudo inverse has to be used to

scale the score. An alternative way to parametrize the model, which avoids this problem, is to use

hyperspherical coordinates to model the time-varying correlation matrix Rt, as discussed by Creal

et al. (2011). Another possibility to limit the number of factors is to impose a common dynamic

factor structure on the volatilities and correlations, as discussed in section “Score-Driven Dynamic

Factor Models”. To further limit the number of parameters, the coefficient matrices A and B can be

restricted to be diagonal or scaled identity matrices, like for the DCC model.

Score-Driven Volatility Models with Realized Measures

Due to the increasing availability of high-frequency data over the years, there have been many de-

velopments in the literature concerning volatility models that include variables that take into account

intraday data. More specifically, it is common to use realized measures, which are estimates of the ex-

post daily return variation. They can be constructed as the sum of squared intraday returns (realized

variance), or using more advanced techniques like kernel estimation (realized kernels), see Barndorff-

Nielsen et al. (2008). It is also possible to construct a realized covariance matrix for a group of asset

returns, using, for example, the multivariate realized kernel of Barndorff-Nielsen et al. (2011).

In the so-called High-Frequency-Based Volatility (HEAVY) models, originally proposed for uni-

variate settings by Shephard and Sheppard (2010) and extended to multivariate settings by Noureldin

et al. (2012), the returns and realized measures are modeled jointly. In these models, the returns and

the realized measures are each driven by their own latent time-varying parameter. This contrasts the

Realized GARCH model of Hansen et al. (2012), where the daily returns and the realized measures

of the variance are both driven by the same underlying volatility process. Gorgi et al. (2019a) extend

this model to the multivariate setting and introduce score-driven dynamics to the underlying volatil-

ity process, which is based on the predictive joint likelihood function of the returns and the realized

covariance matrix.
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Suppose that for every time point t, there is an N -dimensional observation vector yt of returns

and that an N ×N realized covariance matrixXt is available. Then let

yt =H
1/2
t εt ,

Xt = V
1/2
t ηtV

1/2
t ,

(11)

where εt and ηt are serially and mutually independent, and the covariance matrices Ht and Vt are

assumed to be Ft−1 measurable and are linked via the following dynamic equation

Ht = ΛVtΛ
′ ,

where Λ = (λij) is an N × N invertible coefficient matrix with λ11 > 0 for identification. The

functional link between the time-varying parameter vector ft andVt can be set to ft = vech(Vt) , such

that ft is a N(N+1)/2 dimensional vector. It is also possible to consider different parameterizations,

as discussed in section “Score-Driven Multivariate Scale Models”, but for ease of exposition only this

simple parameterization is considered here.

If in (11) εt ∼ N (0, IN) is multivariate standard normally distributed and ηt ∼ W(IN/ν, ν) is

Wishart distributed with expectation IN and degrees of freedom ν ≥ N , as in Gorgi et al. (2019a),

the scaled score is equal to:

st =
1

ν + 1

(
ν[vech(Xt)− ft] + [vech(Λ−1yty

′
t(Λ

′)−1)− ft]
)
. (12)

It stands out that the magnitude of st depends on the difference between Xt and Vt weighted by

the degrees of freedom of the Wishart distribution ν, whereas the contribution of the deviation of

yty
′
t from Vt only receives a weight of one, reflecting the fact that the intraday information is more

informative about the underlying covariance structures than the daily returns. This model does use

thin-tailed distributions, and therefore there is no downweighting mechanism in the score for larger

values of yty
′
t (or Xt). Although the model lacks robust updating, in their empirical application to

fifteen assets from the NYSE, Gorgi et al. (2019a) find that the model performs well in-sample, and

outperforms competing models in out-of-sample density forecasts of the daily returns.

Because realized measures are constructed as sums of intraday returns, which can be noisy, re-

alized covariance matrices typically contain many outliers. The Wishart distribution is not flexible
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enough to capture this behaviour, as is shown by Opschoor et al. (2018). Hence, the model might

improve in case a heavy-tailed distribution is used for modeling the covariance matrix Xt, such that

the score-driven filter is robust against outliers. For example, consider (11), but let εt be standardized

multivariate Student’s t distributed with ν0 > 2 degrees of freedom and let ηt be matrix-F distributed

with ν1 > N and ν2 > N degrees of freedom, leading to a model similar to that of Opschoor et al.

(2018). The matrix-F distribution is the multivariate counterpart of the regular F distribution and is

obtained as a product of a Wishart and an inverse-Wishart distributed random matrices. If ν2 → ∞,

its distribution becomes Wishart with ν1 degrees of freedom. For simplicity, consider Λ = IN , i.e.

Vt = Ht. The computation of the information matrix is cumbersome, so as proposed by Opschoor

et al. (2018), it is convenient to use the inverse Fischer information matrix of the Normal/Wishart

model as a scaling matrix, that is St = 2
ν1+1

BN(Ht ⊗Ht)DN where BN = (D′
NDN)

−1D′
N . The

scaled score st then becomes

st =
1

ν1 + 1

(
ν1

[
ν1 + ν2

ν2 −N − 1
vech

(
Xt

(
IN +

ν1H
−1
t Xt

ν2 −N − 1

)−1
)

− ft

]

+ [wtvech(yty
′
t)− ft]

)
,

where wt = (ν0 + N)/(ν0 − 2 + y′
tH

−1
t yt), and where Ht = devech(ft). The weighting term wt

downweights large values of yty
′
t, and is identical to the weighting term of the plain multivariate

Student’s t scale model in (9). Furthermore, large values of the realized covariance matrix Xt are

also downweighted in a similar manner, which reflects the fact that the matrix-F distribution is fat-

tailed. Namely, instead of taking the difference between vech(Xt) and ft as in (12), Xt is weighted

by a matrix that is inversely related to the matrix Xt. So again, the use of heavy-tailed distributions

induces a robust updating of ft because of the score-driven dynamics. If ν0 → ∞ and ν2 → ∞,

the score becomes equal to (12), for ν = ν1, because then the innovations εt and ηt are standard

normal and Wishart with ν1 degrees of freedom, respectively. It is also possible to consider another

combination of distributions for the innovations, which will automatically lead to other score-driven

dynamics.

In the literature numerous other univariate and multivariate score-driven models that use realized

measures have been considered. See for instance, Buccheri and Corsi (2019), Opschoor and Lucas

(2019), and Opschoor and Lucas (2021).
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Score-Driven Dynamic Copula Models

It is well known that copula models are used to characterize the dependence between variables and are

highly relevant in financial risk management applications. Sklar’s theorem in Sklar (1959) shows that

multivariate distributions can be described by a set of marginal distributions and a copula function.

Specifically, for the bivariate stochastic process {yt}Tt=1 with yt = (y1t, y2t)
′ with conditional joint

distribution Ft and conditional marginal distributions F1t and F2t, by the extended Sklar’s theorem

(Patton, 2006),

yt|Ft−1 ∼ Ft = Ct(F1t, F2t),

where Ft−1 is some information set and Ct is the conditional copula of yt containing all information

about the dependence between y1t and y2t. In other words, this theorem tells that it is possible to

construct Ft by linking together any two marginal distributions F1t and F2t with any copula function

using the same information set Ft−1. This is a remarkable result since it provides great flexibility in

modeling joint distributions. In general, copula models capture a wide range of dependence structures,

such as asymmetric, nonlinear, and tail dependence in extreme events.

The copulaCt can be represented using the joint distribution of probability integral transforms of

y1t and y2t:

Ut|Ft−1 ∼ Ct, U1t = F1t(y1t), U2t = F2t(y2t),

whereUt is the probability integral transform. However, more flexibility can be achieved by allowing

the copula parameter, δt, to be time-varying,

Ut|Ft−1 ∼ Ct(δt).

To ensure that the copula parameter, δt, lies in a particular range it is usually modeled as a monotonic

transformation of ft, i.e. δt = h(ft). For example, in bivariate models, the parameter δt often corre-

sponds to a correlation parameter. To ensure that δt ∈ (−1, 1), the hyperbolic tangent transformation

function can be used.

Patton (2006) introduced a time-varying copula model and proposed to model the dynamics of ft.

However, the proposed approach does not take into account the copula specification and, in general,

the choice of the updating equation is not obvious in many specifications. Score-driven models over-

come these issues by defining an updating equation which makes use of the score of the predictive
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likelihood,

∇t =
∂ log c(ut; δt)

∂δt

∂h(ft)

∂ft
,

where c(ut; δt) denotes the copula density.

The unknown model parameters ψ, including parameters of the marginal distributions and the

parameters of the copula, can be estimated by the method of maximum likelihood. In particular, the

joint likelihood of the model is given by,

L(ψ) =
T∑
t=1

logp(yt|ft,Ft−1;ψ) =
T∑
t=1

log p1(y1t|Ft−1;ψ1) +
T∑
t=1

log p2(y2t|Ft−1;ψ2)

+
T∑
t=1

log ct(F1t(y1t;ψ1), F2t(y2t;ψ2);ψc),

whereψ = (ψ′
1,ψ

′
2,ψ

′
c)

′ are the parameters to be estimated, including the parameters of the marginal

distributions and the parameters of the copula. Theoretically, the parameters can be estimated from

the joint likelihood. However, to reduce the computational burden the estimation is usually carried

out in two steps. First, the parameters of the marginal distribution are estimated, next, the copula

parameters are obtained conditional on the estimated marginal distribution parameters.

In the literature, different score-driven copula models have been considered. For example, Creal

et al. (2013) introduced a bivariate score-driven Gaussian copula model and found that it generalizes

the approach proposed by Patton (2006). In Figure 4, a comparison between the news impact curves

(NICs) for these two models is provided. One can notice that the NIC of Patton (2006) model is

independent of the value of the current correlation coefficient δ. In turn, the NIC for the score-driven

model resembles the NIC of Patton (2006) model for low values of the correlation coefficient δ.

However, when δ > 0 the NIC the score-driven update is not linear anymore. In the score-driven

model, “news” have a more pronounced “negative” effect on the transformed correlation coefficient

for distant values of y1 and y2, with the difference between the models increasing with the increase in

δ (in absolute values) and increase in the distance between y1 and y2. Specifically, if the correlation

coefficient is large and positive, the “news” will have a large negative effect on the update when the

difference between y1 and y2 is large.

In contrast to the Gaussian copula, the score-driven Student’s t copula model limits the impact
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Figure 4: News impact curves of the Patton’s and score-driven Gaussian copula models
News impact curves of the Patton’s (green lines) and score-driven (blue lines) Gaussian copula models when y2 varies,

while y1 is fixed at 0.5 (solid line) or 1 (dashed line) for different values of the correlation parameter δ = {0.1, 0.5, 0.9}.
The score is scaled by the Fisher information matrix with ζ = 1/2 where ζ was defined in section “General Framework

of Score-Driven Models”.

of the possible outliers by allowing dependence in the tails. Janus et al. (2014) use a score-driven

model with Student’s t marginals and Student’s t copula functions to model volatility and correlation

in financial time series with long memory dynamics. They highlight that the robustness features of the

Student’s t copula are especially important for long memory models since the impact of the score on

the update vanishes at a slow rate. Moreover, to capture heavy tailed properties as well as skewness,

Lucas et al. (2014) use a score-driven model with a skewed-t distribution. Copula models that allow

for asymmetry in the tails can also be considered. In particular, the Clayton copula provides support

to the lower tail dependence, while the Gumbel copula supports upper tail dependence.

Several further extensions have been proposed in the literature. For example, Salvatierra and Pat-

ton (2015) adapt score-driven dynamic copula models by incorporating high-frequency information.

They propose a model where the updating equation is equipped with specific realized measures of

correlation. Bernardi and Catania (2019) extend the model with copula dependence parameters that

are regime-specific and are updated according to a score-driven Markov switching model.
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Discussion

Many other extensions of score-driven models have been proposed in addition to the classes of models

discussed in the previous sections. The list is too long for an exhaustive review of all score-driven

models available in the literature. For completeness, a brief mention of some additional examples is

provided.

In forecasting applications, the choice of the loss function/M-estimator depends on the applica-

tion in use. As a result, there are situations when it is desirable not to use a likelihood but some other

criterion function. For example, during the COVID-19 pandemic, one could argue that the cost of

underpedicting COVID related deaths outweighs the cost of overprediction. In such scenarios, asym-

metric loss functions can play an important role. This naturally leads to the idea of the time-varying

parameter update being based on the score of the loss function under consideration. In contrast

to score-driven models, this approach eliminates the need of specifying any parametric distribution

which can be beneficial when the model is potentially misspecified.

One of the first papers that goes beyond the parametric framework is the paper by Creal et al.

(2018). Economic models usually do not provide information about the parametric ditribution of the

data while economic theory can often provide moment conditions. Therefore, it can be desirable to

use Generalized method of moments (GMM) estimator instead of the likelihood. Exploiting this idea,

Creal et al. (2018) propose to model the dynamics of time-varying parameters using a score of the lo-

cal GMM criterion function. Furthermore, Patton et al. (2019) introduce a new semiparametric model

for Value-at-Risk (VaR) and Expected Shortfall (ES) dynamics. VaR and ES can be consistently es-

timated using, so called, “FZ0 loss function”, introduced by Fissler and Ziegel (2016). Hence, it is

intuitive to base the updating equation on the score of this loss function. A similar idea was exploited

in Catania and Luati (2019), who propose to model dynamics of the quantiles of a time series based

on the score of the quantile loss function.

Blasques et al. (2022) introduce a new general class of quasi score-driven models. This class of

models can incorporate many popular loss functions, which can, for example, make the update of the

time-varying parameter robust to outliers as in score-driven models. The estimation can be carried

out using the method of quasi-likelihood. Therefore, in contrast to score-driven models, there is no

direct link between the functional form of the updating equation and the density of the innovations or

loss function. Similar to the score-driven models, this class gives rise to a wide range of models that
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can be used in a variety of empirical applications, making the observation-driven modeling approach

even more appealing.

Acknowledgement

The authors are grateful to Ekaterina Ugulava for her excellent research assistance, Julia Schaum-

burg for providing the code for score-driven dynamic spatial model illustration, and Marco Bazzi for

providing the code for score-driven dynamic Markov switching illustration.

Further reading

Artemova, M., Blasques, F., van Brummelen, J., and Koopman, S. J. (2022). Score-Driven Models:

Methodology and Theory. In Oxford Research Encyclopedia of Economics and Finance, page tba.

Oxford University Press.

Creal, D., Koopman, S. J., and Lucas, A. (2008). A general framework for observation driven time-

varying parameter models. Technical report, Tinbergen Institute Discussion paper.

Creal, D., Koopman, S. J., and Lucas, A. (2013). Generalized autoregressive score models with

applications. Journal of Applied Econometrics, 28(5):777–795.

Harvey, A. C. (2013). Dynamic models for volatility and heavy tails: with applications to financial

and economic time series, volume 52. Cambridge University Press.

Harvey, A. C. (2022). Score-driven time series models. Annual Review of Statistics and Its Applica-

tion, 9:321–342.

References

Anselin, L. (1988). Spatial econometrics: methods and models, volume 4. Springer Science &

Business Media.

Artemova, M., Blasques, F., van Brummelen, J., and Koopman, S. J. (2022). Score-Driven Models:

Methodology and Theory. In Oxford Research Encyclopedia of Economics and Finance, page tba.

Oxford University Press.

29



Babii, A., Chen, X., and Ghysels, E. (2019). Commercial and residential mortgage defaults: Spatial

dependence with frailty. Journal of Econometrics, 212(1):47–77.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized

kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica,

76(6):1481–1536.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2011). Multivariate realised

kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise

and non-synchronous trading. Journal of Econometrics, 162(2):149–169.

Bauwens, L., Laurent, S., and Rombouts, J. V. (2006). Multivariate GARCH models: a survey.

Journal of Applied Econometrics, 21(1):79–109.

Bazzi, M., Blasques, F., Koopman, S. J., and Lucas, A. (2017). Time-varying transition probabilities

for Markov regime switching models. Journal of Time Series Analysis, 38(3):458–478.

Bernardi, M. and Catania, L. (2019). Switching generalized autoregressive score copula models with

application to systemic risk. Journal of Applied Econometrics, 34(1):43–65.
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1. Monthly seasonally adjusted unemployment rate series has been retrieved from

https://fred.stlouisfed.org.

2. The average crude oil spot prices series has been retrieved from the investing.com

website.

35


